UPPSC AE Syllabus 2021

UPPSC AE exam is conducted in two parts comprising of paper 1 and paper 2. Paper 1 comprises of Hindi along with subject of candidates. While paper 2 tests general knowledge and grasp over general studies along with subject of candidate.

Paper 1 Hindi	Engineering subject (part A)
Paper 2 General Studies	Engineering subject (part B)

For your better understanding , we will discuss the Hindi and general studies syllabus for **UPPSC AE exam.** Which will be followed by Part A and Part B of respective Engineering subject.

UPPSC AE Hindi Syllabus (Paper 1)

Hindi questions not only test basic grammar and basic knowledge of hind. Hindi syllabus in UPPSC AE exam includes:

- प्रत्यय
- समास
- मुहावरे और लोकोक्तियाँ
- अनेक शब्दों के लिए एक शब्द
- उचित शब्द से दिए गए रिक्त स्थान की पूर्ती
- पर्यायवाची शब्द, विलोम शब्द, शब्द युग्म, लिंग परिवर्तन, वचन परिवर्तन आदी
- वर्ण, वर्तनी और उच्चारण
- वाक्य-क्रम व्यवस्थापन
- उपसर्ग और प्रत्यय
- विपरीतार्थक शब्द
- संधि तथा संधि-विच्छेद
- अनेकार्थक शब्द

UPPSC AE General Studies Syllabus (Paper 2)

Questions are based on current events and persons in news, along with basic General studies static questions. The detailed **UPPSC AE General Studies Syllabus**, is as follows:

- Indian Polity, Economy & Culture
- Current National and International Important Events
- Indian Agriculture, Commerce & Trade
- Population, Ecology & urbanization
- General Science
- Culture and traditions of Uttar Pradesh
- Elementary Mathematics Arithmetic, Algebra, and Geometry.
- History of India
- World Geography & Indian Geography & Natural Resources of India
- Indian National Movement

Questions will also test reasoning capabilities by means of simple reasoning questions.

Paper I		Paper II	
ENGINEERING MECHANICS, STRENGTH OF MATERIALS AND STRUCTURAL ANALYSIS	ENGINEERING MECHANICS: Units and Dimensions, SI units, vectors, concept of force, Concept of particle and rigid body Concurrent, Non- Concurrent and parallel forces in a plane, moment of force and varignon`s theorem free body diagram, conditions of equilibrium Principle of virtual work, equivalent force system. First and second Moment of area, Mass moment of inertia, Static Friction, inclined	FLUID MECHANICS, OPEN CHANNEL FLOW, HYDRAULIC MACHINES AND HYDROPOW ER ENGINEERIN G	Fluid properties and their roles in fluid motion, fluid statics including forces acting on plane and curved surfaces, Kinematics and Dynamics of Fluid flow: Velocity and acceleration, stream lines, equation of continuity, irrotational and rotational flow, velocity potential and stream functions, flownet, methods of drawing flownet, source and sink, flow separation, free and forced vorties. Flow control volume equation,

UPPSC AE Syllabus Civil Engineering

principles, D` Alembert`s	continuity,
principle, Collision of	momentum and
elastic bodies, rotation of	energy equations,
rigid, bodies, simple	NavierStrokes
harmonic motion.	equation, Euler's
	equation of motion
STRENGTH OF	and application to
MATERIALS:	fluid flow
Simple Stress and Strain,	problems, pipe
Elastic constants, axially	flow, plane,
loaded compression	curved, stationary
members, Shear force and	and moving vanes
bending moment, theory	sluice gates, weirs,
of simple bending,	orifice meters and
bending stress, Shear	Venturi meters.
Stress, Beams of uniform	Dimensional
strength, Leaf Spring,	Analysis and
close coiled helical	Similitude:
springs, Strain Energy in	Buckingham's Pi-
direct stress, bending &	theorem,
shear. Deflection of	dimensionless
beams; Macaulay's	parameters,
method, Mohr's Moment	similitude theory,
area method, Conjugate	model laws,
beam method, unit load	undistorted and
method, Torsion of shafts,	distorted models
Transmission of power,	Laminar Flow:
Elastic stability of	Laminar flow.
columns, Euler's Rankin's	between parallel,
and Secant formulae.	stationary and
Principal stresses and	moving plates,
-	• •
strains in two dimensions, Mohr's Circle, Theories of	flow through pipes
Elastic Failure, Thin and	Boundary Layer: Laminar flow
,	
Thick cylinder, Stresses	between parallel,
due to internal and	stationary and
external pressureLame's	moving plates,
equations	flow through pipes
	Turbulent flow
STRUCTURALANALYS	through pipes
IS:	Characteristics of
Castiglianios theorems I	turbulent flow,
and II, Unit load method	velocity
of consistent deformation	distribution, pipe
applied to beams and pin	friction factor,
 jointed trusses. Slope-	hydraulic grade

deflection, moment distribution, Kani's method of analysis and column Analogy method applied to indeterminate beams and rigid frames. Rolling loads and influence lines: Influence lines for reactions of beam. shear force and bending moment at a section of beam. Criteria for maximum shear force and bending moment in beams traversed by a system of moving loads, influence lines for simply supported plane pin jointed trusses, Arches: Three hinged, two hinged and fixed arches, rib shortening and temperature effects, influence lines in arches. Matrix methods of analysis: Force method and displacement method of analysis of indeterminate beams and rigid frames. Plastic Analysis of beams and frames: Theory of plastic bending, plastic analysis, statical method, Mechanism method. Unsymmetrical bending: Moment of inertia, product of inertia. position of neutral axis and principal axis, calculation of bending stresses.

line and total energy line. siphons, expansion and contractions in pipes pipe networks, water hammer in pipes and surge tanks **Open Channel** Flow: Flow types, uniform and nonuniform flows. momentum and energy correction factors, Specific energy and specific force, critical depth, resistance equations and roughness coefficient, rapidly varied flow, flow in transitions, Brink flow, Hydraulic jump and its applications, waves and surges, gradually varied flow. classification of surface profiles, control section, Integration of varied flow equation and their solution HYDRAULIC

HYDRAULIC MACHINESAND HYDROPOWER: Centrifugal pumps-Types, characteristics, Net Positive Suction-

			head (NPSH), specific speed, Pumps in series and parallel. Reciprocating
			pumps, Air vessels, Hydraulic ram, efficiency parameters, Rotary and positive displacement pumps, diaphragm and jet pumps
			Hydraulic turbines types, classification, Choice of turbines, performance parameters, controls, characteristics, specific speed.
			Principles of hydropower development: Types, layouts and component works, surge tanks, 'types and choice, Flow duration curves and dependable flow, Storage and pondage, Pumped
	Factors of safety and load		storage plants, Special types of hydel plants Hydrologic cycle,
DESIGN OF STRUCTURES: STEEL, CONCRETE AND MASONRY STRUCTURES. STRUCTU RAL STEEL DESIGN	factors, rivetted, bolted and welded joints and its connections, Design by working, stress/limit state method of tension and compression member, beams of built up section,	Hydrology and Water Resources Engineering	precipitation, evaporation, transpiration, infiltration, overland flow, hydrographs, flood frequency analysis,

rivetted and welded plate	flood routing
girders, gantry girders,	through a
stancheons with battens	reservoir, channel
and lacings, slab and	flow routing-
gussetted column bases,	Muskingam
Design of highway and	method.
railway bridges: Through	Specific yield,
and deck type plate girder,	storage coefficient,
Warren girder, Pratt truss.	coefficient of
Walten glider, Flatt truss.	permeability
Reinforced Concrete:	confined and
Working Stress and Limit	unconfined
State Method of	aquifers, radial
designRecommendations	flow into a well
of B.I.S. codes, design of	under confined and
one way and two way	unconfined
5 5	conditions, Open
slabs, stairs-case slabs,	wells and tube
simple and continuous	wells. Ground and
beams of rectangular, T	
and L sections,	surface water
compression members	recourses single
under direct load with or	and multipurpose
without eccentricity,	projects, storage
isolated and combined	capacity of
footings, Cantilever and	reservoirs,
counter-fort type retaining	reservoir losses,
walls, Water tanks:	reservoir
Design requirements as	sedimentation.
per B.I.S. code for	Water
rectangular and circular	requirements of
tanks resting on ground,	crops consumptive
Prestressed concrete:	use, duty and delta
Methods and systems of	irrigation methods,
prestressing, anchorages,	Irrigation
analysis and design of	efficiencies
sections for flexure based	
on working stress, losses	Ground Water
of prestress, Earth quake	flow:
resistant design of	Ground and
building as per BIS code.	surface water
Design of brick masonry	recourses single
as per I. S. Codes, Design	and multipurpose
of masonry retaining	projects, storage
walls.	capacity of
	reservoirs,
	reservoir losses,

	reservoir
	sedimentation.
	Water
	requirements of
	crops consumptive
	use, duty and delta,
	irrigation methods,
	Irrigation
	efficiencies.
	chiefeneles.
	Canals:
	Distribution
	systems for cannal
	irrigation, canal
	capacity, canal
	losses, alignment
	of main and
	distributory canals,
	Design of cannal
	by kennedy's and
	Lacey's thoeorie,
	Water logging and
	its prevention.
	Diversion head
	works:
	Compenents,
	Principles and
	design of weirs on
	permeable and
	impermeable
	foundations,
	Khosla's theory,
	Bligh's creep
	theory Storage
	works. Cross
	drainage works.
	Types of dams,
	design principles
	of gravity and
	earth dams,
	stability analysis.
	Spillways:
	Spillway types
	energy dissipation

			Divon training
			River training:
			Objectives of river
			training, methods
			of river training
			and bank
			protection.
	Building Materials:		Highway
	Physical properties of		Engineering:
	construction materials		Principles of
	with respect to their use:		Highway
	stones bricks, tiles, lime,		alignments,
	glass, cement, mortars,		classification and
	Concrete, concept of mix		geometric design,
	design, pozzolans,		elements and
	plasticizers, super		standards for
	plasticizers, Special		roads. Pavement:
	concrete: roller		flexible and rigid
	compacted concrete, mass		pavements Design
	concrete, self compacting		principles and
	concrete, ferro cement,		methodology.
	fibre reinforced concrete,		Construction
	high strength concrete,		methods and
	high performance		materials for
	concrete, Timber:		stabilized soil.
	properties, defects and		WBM, Bituminous
	common preservation	Transportation	works and Cement
		Engineering	Concrete roads.
Building Materials,	selection of materials for	8 8	Surface and sub-
Construction Technology,	various uses e.g. Low cost		surface drainage
Planning and Management	housing, mass housing,		arrangements for
	high rise buildings.		roads, culvert
	88		structures.
	Constructions		Pavement
	Technology, Planning and		distresses and
	Management:		strengthening by
	Masonry constructions		overlays. Traffic
	using brick, stone,		surveys and their
	construction detailing and		application in
	strength characteristics		traffic planning,
	paints, varnishes, plastics,		Typical design
			features for
	water proofing and damp		
	proofing materials.		channelized,
	Detailing of walls, floors,		intersection, rotary
	roofs, staircases, doors		etc., signal
	and windows. Plastering,		designs, standard
	pointing, flooring, roofing		traffic signs and

	1		
	and construction features.		markings
	Retrofitting of buildings,		
	Principle of planning of		Railway
	building for residents and		Engineering:
	specific uses, National		Permanent way,
	Building code provisions		ballast, sleeper,
	and uses. Basic principles		chair and
	of detailed and		faslenings, points,
	approximate estimating,		crossings, different
	specifications, rate		types of turn outs,
	analysis, principles of		cross-over, setting
	valuation of real property.		out of points,
	Machinery for earthwork,		Maintenance of
	concreting and their		track, super
	specific uses, factors		elevation, creep of
	affecting selection of		rails ruling
	construction equipments,		gradients, track
	operating cost of		resistance tractive
	equipments. Construction		effort, curve
	activity, schedules,		resistance, Station
	organizations, quality		vards and station
	assurance principles.		buildings, platform
	Basic principle of network		sidings, turn outs,
	CPM and PERT uses in		Signals and
	construction monitoring,		interlocking, level
	cost optimization and		crossings
	resource allocation. Basic		crossings
	principles of economic		Air port
	analysis and methods.		Engineering:Layou
	Project profitability: Basis		ts, Planning and
	principles of financial		design
			design
	planning, simple toll fixation criterions		
I		<u> </u>	W/otors over 1
	Types of soils, phase		Water supply:
	relationships, consistency		Estimation of
	limits particles size		water demand,
	distribution,		impurities in water
	classifications of soils,		and their
	structure and clay	Environmental	significance,
GEO TECHNICAL	mineralogy. Capillary	Engineering	physical, chemical
ENGINEERINGAND	water, effective stress and	8 8	and bacteriological
FOUNDATION	pore water pressure,		parameters and
ENGINEERING	Darcy's Law, factors		their analysis,
	affecting permeability,		waterborne
	determination of		diseases, standards
	permeability, permeability		for potable water

1	
of stratified soil deposits.	Water collection &
Seepage pressure, quick	treatment:
sand condition,	Intake structures,
compressibility and	principles and
consolidation, Terzaghi's	design of
theory of one dimensional	sedimentation
consolidation,	tank, coagulation
consolidation test.	cum flocculation
Compaction of soil, field	units slow sand
control of compaction	filter, rapid sand
total stress and effective	filter and pressure
stress parameters, pore	filter, theory &
pressure parameters, shear	practices of
strength of soils, Mohr	chlorination, water
Coulomb failure theory,	softening, removal
shear tests. Earth pressure	of taste and
at rest, active and passive	salinity, Sewerage
pressures, Rankin's theory	Systems, Domestic
Coulomb's wedge	and industrial
theory, Graphical method	wastes, storm,
of earth theory, Graphical	sewage, separate
method of earth pressure	and combined
on retaining wall,	systems, flow
sheetpile walls, braced	through sewers,
excavation, bearing	design of sewers
capacity, Terzaghi and	Waste water
other important theories,	characterization
net and gross bearing	Solids, Dissolved
pressure. Immediate and	oxygen (DO),
consolidation settlement,	BOD COD, TOC,
stability of slope, total	and Nitrogen,
stress and effective stress	Standards for
methods, conventional	disposal of effluent
methods of slices,	in normal water
stability number.	course and on to
Subsurface exploration,	land
methods of boring,	
sampling, penetration	Waste water
tests, pressure meter tests,	treatment
essential features of	Principles and
foundation, types of	design of
foundation, design	wastewater
criteria, choice of type of	Treatment units,
foundation, stress	Screening, grit
distribution in soils,	chamber,
Boussinessq's theory,	sedimentation tank
 ,	

Westergaard method, Newmarks chart, pressure bulb, contact, pressure, applicability of different bearing capacity theories, evaluation of bearing capacity from filed tests, allowable bearing capacity, settlement analysis, allowable settlement, proportioning of footing, isolated and combined footings, rafts, pile foundation, types of piles, plies capacity, static and dynamic analysis, design of pile groups, pile load test, settlement of piles lateral loads, foundation for bridges, Ground improvement techniques: sand drains, stone columns, grouting, soil stabilization geotextiles and geomembrane, Machine foundation: Natural frequency, design of machine foundations based on the recommendation of B.I.S. codes		activated sludge process, trickling filters, oxidation ditches, oxidation ponds, septic tank; Treatment and disposal of sludge; recycling of waste water Solid waste management Classification, Collection and disposal of solid waste in rural and urban areas, Principles of solid waste management Environmental pollution Air and water pollution and their control acts. Radioactive waste and their disposal Environmental impact assessment of Thermal power Plants, mines and river valley projects, Sustainable development
	Survey Engineering and Geology	Surveying Common methods and instruments for distance and angle measurements in Civil Engineering works, their use in plane table traverse survey, levelling, triangulation,

contouring and
topographical
maps. Survey
layouts for culverts
canal, bridge,
roads, railway
alignment and
buildings. Basic
principles of
photogrammetry
and remote
sensing.
Introduction to
Geographical
information
system.
Engineering
Geology
Basic concepts of
Engineering
geology and its
applications in
projects such as
dams, bridges and
tunnels

UPPSC AE Syllabus Mechanical Engineering

Paper I

1. Engineering Mechanics

Analysis of force systems, friction, cendtroid and centre of gravity, trusses and beams, principle of virtual work, kinematics and kinetics of particle, kinematics and kinetics of rigid bodies

2. Mechanism and Machines

Velocity and acceleration of links, cams and followers gears and gear trains clutches, belt drives, brakes and dynamometers, Flywheel and governors, balancing of rotating and reciprocating masses, balancing of multi cylinder engines, Free and forced vibration, damped vibration, whirling of shafts.

3. Mechanics of Solids

Stresses and strains, compound stresses strains, Torsion of circular shafts, stresses and deflections in beams unsymmetrical bending, curved beams, Thin and thick cylinders and spheres, Buckling of columns, Energy methods, helical and leaf springs

4. Desing of Machine Elements

Design for Static and dynamic loading, Theories of failure, fatigue principles of design of rivetted, welded and bolted joints, shafts, springs, bearings, brakes, clutches and flywheels

5. Engineering Materials

Crystal systems and crystallography, crystal imperfections, Alloys and phase diagrams, Heat treatment, ferrous and non ferrous metals and alloys, Mechanical properties and testing.

6.Manufacturing

Metal casting, metal forming, metal joining, Mechanics of metal cutting, machining and machine tool operations, unconventional machining methods limits, fits and tolerances, inspection: Surface roughness, comparators, computer integrated manufacturing, Flexible manufacturing systems, jigs and fixtures

7. Industrial Engineering

Production, planning and control, inventory control and operation, research, CPM and PERT

8. Mechatronics and Robotics

Microprocessors and microcontrollers, Architecture, Programming, Computer interfacing Programmable logic controller, sensors and actuators, Piezoelectric accelerometers, Hall effect sensors, optical encoder, resolver, Inductosyn, Pneumatic and Hydraulic Actuators, stepper motor, control system, mathematical modeling, control signals, controllability and observability, Robotics: Robot classification, robot specification. Notation: Direct and inverse kinematics homogeneous co-ordinates and arm equation of four axix SCARA Robot

Paper II

1. Thermodynamics

Thermodynamic systems and processes, properties of pure substances, concepts and applications of zeroth, first and second law of thermodynamics, entropy, availability and irreversibility, detailed analysis of thermodynamic cycles, ideal and real gases, fuels and combustion

2. Fluid Mechanics

Basic concepts and properties of fluids, manometry, fluid statics, buoyancy, equations of motion, Bernoulli's equation and applications, viscous flow of incompressible fluids, laminar and turbulent flows, flow through pipes and head losses in pipes, dimensional analysis, Forces on immersed bodies and boundary layer over a flat plate, isentropic and adiabatic flows, normal shock waves.

3. Heat Transfer

Modes of heat transfer, steady and unsteady heat conduction, thermocouple time constant, critical thickness of insulation, heat transfer from fins, momentum and energy equations for boundary layer flow on a flat plate. Free and forced convection, radiation heat transfer, Stefan-Boltzmann law, shape factor, black and grey body radiation heat exchange, boiling and condensation, heat exchanger analysis, LMTD and NTU – effectiveness methods

4. Energy Conversion

SI and CI engines, performance characteristics and testing of IC engines, combustion phenomena in SI and CI engines, carburetion and fuel injection systems, emissions and emission control. Reciprocating and rotary pumps, pelton wheel, Francis and Kaplan turbines, velocity diagrams impulse and reaction principles steam and gas turbines; Rankine and Brayton cycles with regeneration and reheat, high pressure boilers, draft, condensers. Unconventional power systems, including nuclear, MHD, biomass, wind and tidal systems, utilization of solar energy; Reciprocating and rotary compressors; theory and applications, Theory of propulsions, pulsejet and ramjet engines.

5. Environmental Control

Vapour compression, vapour absorption, steam jet and air refrigeration systems, properties of refrigerant and their nomenclature, psychometrics properties and processes, psychrometic relations, use of pschrometic chart, load estimation, supply air conditions, sensible heat factors, air conditioning system layout, comfort chart, comfort and industrial air conditioning.

UPPSC AE Syllabus Electrical Engineering

Paper 1

1. Networks and Systems

Steady-state and Transient-state Analysis of systems, Thevenin's-, Norton's-, Superposition- and Maximum Power Transfer-theorems, Driving point Transfer functions, Two-port networks, Laplace and Fourier transforms and their applications in Network analysis, Z-transforms for discrete systems, R-L, R-C & L-C network synthesis.

2. E.M. Theory

Analysis of electrostatic and magnetostatic fields, Laplace, Poission and Maxwell equations, solution of boundary value problems, electromagnetic wave propagation, ground and space waves, Propagation between Earth Station and Satellites.

3. Control Systems

Mathematical modelling of dynamic linear continuous systems, Block diagrams and Signal flow graphs, time-response specifications, steady-state error, RouthHurwitz criterion, Nyquist techniques, Root Loci, Bode Plots, Polar Plot, and stability analysis, Lag-, Lead-, Lag-Lead-compensation, state-space modelling, state transition matrix, controllability and observability.

4. Elements of Electronics

Basics of semiconductor diodes, BJT, FET and their chracteristics, different types of transistors and FET amplifiers equivalent circuits and frequency response, feedback oscillators, colpitts oscillator and Hartley Oscillator, Operational amplifiers-chracteristics and applications

5. Power System Analysis and Design

Line parameters and calculations, Performance of Transmission lines, Mechanical design of overhead lines and Insulators, Corona and radio interference Parameters of single- and three-core Cables, Bus admittance matrix, Load flow equations and methods of solutions, Fast-decoupled load flow, Balance- and Unbalanced-faults analysis, Power system stability, Power system transients and travailing Waves, EHV Transmission, HVDC transmission, Concepts of FACTS, Voltage Control and Economic operation, Concepts of distributed generation, solar and wind power, smart grid concepts.

6. Elements of Electrical Machines

General concepts of E.m.f., m.m.f., and torque in rotating machines, DC Machines: motor and generator characteristics, equivalent circuits, commutation and amature reaction, starting and speed controls of motors; Synchronous Machines: performance, regulation, Parallel operation of generators, motor starting, characteristics and applications, Transformers: phasor-diagram and equivalent circuit, efficiency, and voltage regulation, auto-transformers, 3-phase transformers.

7. Measurement

Basic methods of measurement, Precision and standards, error analysis, Bridges and Poteniometers; moving coil, Moving iron, dynamometer and induction type instruments, measurement of voltage, current, power, energy, and power factor, Instrument transformers, digital voltmeters and multimeters, phase-, time- and frequencymeasurement, Q-meters Oscilloscopes, Basics of sensors, and data acquisition system, Instrumentation systems for pressure and temperature measurements

Paper II

1. Power Electronics and Drives

Semiconductor, power, diodes, transistors, thyristors, triacs, GTOs, MOSFETs and IGBTs static characteristics and principles of operation, triggering circuits single phase and threephase controlled rectifiers-fully controlled and half controlled, smoothing and filters regulated power supplies, DC-DC choppers and inverters, speed control circuits for DC and A.C. drives, Basics of electric drives: types, quadrant operation, reversing and braking of electric motors, estimation of power ratings, traction motors.

2. Digital Electronics

Boolean algebra, logic gates, combinational and sequencial logic circuits, multiplexers, multivibrators, sample and hold circuits, A/D and D/A converters, basics of filter circuits and applications, active filters, semiconductor memories

3. Microwaves and Communication Systems

Electromagnetic wave in guided media, wave guide components, resonators, microwave tubes, microwave generators and amplifiers

4. Analog Communication Basics

modulation and demodulation, noise and bandwidth, transmitters and receivers, signal to noise ratio, digital communication basics, sampling, quantizing, coding frequency- and time-domain multiplexing, sound and vision broadcast, antennas, transmission lines at audio and ultra-high frequencies.

5. Induction and Special Machines

Three-phase Induction motors Rotating magnetic field, Torque-slip characterstics, Equivalent Circuit and determination of its parameters, starters, speed control, Induction generators. Single phase Induction motors: Theory and phasor diagrams, characteristics, starting and applications, repulsion motor, series motor: E.m.f. equation and phasor diagram and performance, servomotors, stepper motors, reluctance motors, brushless DC motors (BLDC)

6. Power System Protection and Switch Gear

Methods of Arc Extinction, Restriking voltages and recovery voltage, testing of circuit breakers, Protective relays, protective schemes for power system equipment, surges in transmission lines and protection

7. Numerical Methods

Solution of non liner algebraic equations, single and multisteps methods for solution of differential equations.

8. Electrical Engineering Materials

Crystal structure and defects, conducting, insulating and magneting Materials, super-conductors

9. Elements of Microprocessors

Data representation and representation of integer and floating point-numbers. Organization and programming of a microprocessor, ROM and RAM memories CPU of a microcomputer, interfacing memory and I/O devices, Programmable peripheral and communication interface. Application of microprocessors.

UPPSC AE Syllabus Agricultural Engineering

Paper I

1. Thermodynamics and Heat Engines

Concept of energy, temperature and heat equations; laws of thermodynamics, pure substances and their properties; entropy, Rankine, air standard Otto, Diesel and Joule cycles; indicator diagrams

2. Farm Power

Sources and status of power in India; farm power and agricultural productivity relationship; construction and operational features of IC engines, various system of IC engine namely carburetion, ignition, cooling, lubrication; valves and valve timing, special features of diesel engines, tractors and their classification, power transimission, repair and maintenance; tractor testing, and tractor economics; power tillers – their economics and suitability, Energy inAgriculture.

3. Farm Machinery

Design, construction, operation, repair and maintenance of tillage tools, implements and equipment viz. mould board and disk plough; harrows, cultivators, rotary tiller, seeding and planting machines, hoe, weeders, sprayers and dusters; harvester, threshers and combines; soil and crop factors influencing machine performance and energy requirements; selection of farm machines, economics of agricultural mechanization. Earth moving machineries.

4. Heat and Mass Transfer

Thermal properties of materials; steady state and transient heat conduction, natural and forced convection; boiling, condensation, thermal radiation exchange, Heat exchangers, heat and mass transfer analogy; Fick's laws of diffusion, psychrometrics; analysis of heat and mass transfer processes, instrument and measurement systems.

5. Process and Food Engineering

Unit operations in post harvest processing (cleaning, grading, drying, size reduction, evaporation, pasteurization, distillation etc.); processing of cereals, pulses, oilseeds, fruits & vegetables, animal feed, spices, dairy products, meat etc.; design of processing equipment and systems, milking machines.

6. Storage and Handling

Changes in stored products during storage; storage of food grains and their products, perishables (vegetable, fruits, dairy product, meat and eggs) storage system- air tight ventilated, refrigerated, modified atmospheric and controlled atmospheric storages; packaging; conveyors; design and management of storage and handling systems. Reducing losses in storages and handling.

Paper II

1. Hydraulics and Fluid Mechanics

Fluid properties, units and dimensions: surface tension and capillarity, equation of continuity, Bernoulli equation, Laminar and turbulent flow, steady and unsteady flow, Flow of fluids in pipes and open channels, design of open channels for non erosive and non silting velocities, most economical cross section, measurement of irrigation water and other water measuring devices viz. weirs, notches, orifices and flumes

2. Surveying and Leveling

Linear measurements; survey methods and devices used; principle of leveling, simple, differential and profile leveling; Contouring and characteristics of contour lines; Land leveling and grading, earth work estimation.

3. Soil and Water Conservation Engineering

Forms of precipitation; hydrologic cycle; Point rainfall analysis, frequency analysis, agricultural watershed and its management; water management in agri-horti-aquaculture system, mechanics of water and wind erosion; Rational method of prediction of peak runoff and its limitations; concept of unit hydrograph and instantaneous hydrograph; factors affecting erosion and runoff; water erosion control measures – contour cultivation, strip cropping, terracing, afforestation, pastures; Design of gully control structures – temporary and permanent; stream bank erosion; flood routing; flood amelioration by upstream soil water management; wind erosion control measures and sand dunes stabilization

4. Irrigation Pumps

Design, construction, performance characteristics, selection, installation, servicing and maintenance of different pumps (reciprocating, centrifugal, gear, turbine, submersible, propeller, jet); Hydraulic ram; Renewable and non-renewable power sources for pumping solar pumps

5. Irrigation and Drainage Engineering

Water wealth and irrigation in India; Soil water plant relationship; Forms and occurrence of soil water; methods and devices for soil moisture measurement; water requirement of crops; irrigation scheduling; irrigation methods – their hydraulics and design flood, border, furrow, sprinkler and drip irrigation, concept of irrigation efficiencies; water conveyance and control; Design of canals. Lacey and Kennedy's theories. Drainage needs and its benefits; Darcy's Law, hydraulic conductivity; drainage coefficient; drainage methods, surface drainage (drainage of flat and sloping lands); design of open ditches their alignment and construction; designs and layout of subsurface drains; depth and spacing of drains and drainage outlets; installation of drains and drainage wells; drainage of salt affected areas

6. Ground Water Hydrology and Tube Well Engineering

Occurrence and movement of ground water, steady and transient flow into wells, well interference, well drilling, design of well assembly and gravel pack, installation of well screen, completion and development of wells.

7. Rural Engineering

Building materials and their properties; Farm stead planning, and design of dairy barns; poultry, goat-sheep, and piggery housing; selection of site, planning and design of rural houses, farm roads, village drainage; waste disposal and sanitary structures; cost estimates, green house construction.