

Chemistry By AKS Sir DPP-14

Chemistry [DPP] **Chemical Equilibrium**

DPP-14

Chemistry By AKS Sir

 Consider the two gaseous equilibrium involving SO₂ and the corresponding equilibrium constants at 299 K

$$SO_{2}(g) + \frac{1}{2} O_{2}(g) \Longrightarrow SO_{3}(g) ; K_{1}$$

$$4SO_3(g) \rightleftharpoons 4SO_2(g) + 2O_2(g);$$
 K_2

The value of the equilibrium constant are related by :-

(A)
$$K_2 = \frac{1}{(K_1)^4}$$
 (B) $K_2 = K_1^4$

(C)
$$K_2 = \left(\frac{1}{K_1}\right)^{\frac{1}{4}}$$
 (D) $K_2 = \frac{1}{K_1}$

DPP-14

Chemistry By AKS Sir

2. For the reactions :- A \rightleftharpoons B ; $K_C = 2$,

$$B \rightleftharpoons C$$
; $K_C = 4$, $C \rightleftharpoons D$; $K_C = 6$

 K_C for the reaction $A \rightleftharpoons D$:

(A) 12

(B) 4/3

(C) 24

- (D) 48
- 3. If $A \rightleftharpoons B (K_c = 3)$, $B \rightleftharpoons C (K_c = 5)$, $C \rightleftharpoons D (K_c = 2)$

The value of equilibrium constant for the above reaction are given, the value of equilibrium constant for D

A will be:-

(A) 15

(B) 0.3

(C) 30

(D) 0.03

DPP-14

4. Effect of increasing temperature on equilibrium constant is given by log

$$K_2 - log K_1 = \frac{-\Delta H}{2.303R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$$
. Then for

an endothermic reaction the false statement is:-

(A)
$$\left[\frac{1}{T_2} - \frac{1}{T_1}\right]$$
 = positive

- (B) $\log K_2 > \log K_1$
- (C) $\Delta H = positive$
- (D) $K_2 > K_1$
- **5.** The equilibrium constant for the reaction

 $Br_2 \implies 2Br$ at 500 K and 700 K are 1×10^{-10} and 1×10^{-5} respectively. The reaction is:-

- (A) Endothermic (B) Exothermic
- (C) Fast
- (D) Slow

DPP-14

- 6. The equilibrium constant in a reversible reaction at a given temperature:-
 - (A) Depends on initial concentration of the reactants.
 - (B) Depends on the concentration of the products at equilibrium.
 - (C) Does not depend on the initial concentrations.
 - (D) It is not characteristic of the reaction.
- 7. For a reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$, the value of K_c does not depends upon :-
 - (a) Initial concentration of the reactants
 - (b) Pressure
 - (c) Temperature
 - (d) Catalyst
 - (A) Only c
- (B) a, b, c
 - (C) a, b, d
- (D) a, b, c, d

DPP-14

- 8. For any reversible reaction if concentration of reactants increases then effect on equilibrium constant:-
 - (A) Depends on amount of concentration
 - (B) Unchange
 - (C) Decrease
 - (D) Increase
- 9. In an experiment the equilibrium constant for the reaction A + B ⇒ C + D is K when the initial concentration of A and B each is 0.1 mol L⁻¹ Under the similar conditions in an another experiment if the initial concentration of A and B are taken 2 and 3 mol L⁻¹ respectively then the value of equilibrium constant will be:-
 - (A) $\frac{K}{2}$

(B) K

(C) K²

(D) $\frac{1}{K}$

Chemistry By AKS Sir DPP-14

10. List X

List Y

(A) Active mass (i) $_{\Delta}n = 0$

(B) Dynamic (ii) Molar nature

concentration

(C) A + heat (iii) Vant hoff's

⇒ B

equation

(D) log (K_{p_2}/K_{p_1}) (iv) adaptation if

=
$$\frac{\Delta H}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$
 temperature

increases

(E) 2A(g)+B(g) (v) Chemical

 \Longrightarrow 3C(g) equilibrium

Correct match list X and Y

(A) A - (V), B - (II), C - (III), D - (I),

E - (IV)

(B) A - (V), B - (IV), C - (III),

D - (II), E - (I)

(C) A - (II), B - (V), C - (IV),

D - (III), E - (I)

(D) None of these

DPP-14

- **11.** For the reaction, $H_2(g) + I_2(g) \Longrightarrow$ 2HI(g) equilibrium constant, K_P changes with :-
 - (A) Temperature
 - (B) Total pressure
 - (C) Catalyst
 - (D) Amount of H₂ and I₂ present
- **12.** Select the correct statement from the following:
 - (A) Equilibrium constant changes with addition of catalyst
 - (B) Catalyst increases the rate of forward reaction.
 - (C) The ratio of mixture at equilibrium does not changed by catalyst
 - (D) Catalyst are active only in solution.

DPP-14

- The equilibrium constant (K_p) for the **13.** reaction $PCl_5(g) \rightleftharpoons PCl_3(g) +$ Cl₂(g) is 16. If the volume of the container is reduced to one-half its original volume, the value of K_p for reaction at the same temperature will be :-
 - (A) 32
- (B) 64
- (C) 16
- (D) 4
- The equilbrium constant for the 14. reaction:

 $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$ at 2000 K is 4×10^4 . In presence of catalyst the equilibrium is established ten times faster at the same temperature. What is the value of equilibrium constant in presence of catalyst:-

- (A) 40×10^{-4} (B) 4×10^{-4}
- (C) 4×10^4 (D) None

DPP-14

- **15.** The equilibrium constant of the reaction $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be
 - (A) 16

(B) 32

(C) 64

- (D) 128
- **16.** If some He gas is introduced into the equilibrium $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ at constant pressure and temperature then equilibrium constant of reaction:
 - (A) Increase
 - (B) Decrease
 - (C) Unchange
 - (D) Nothing can be said

DPP-14

17. The following equilibrium are given

$$N_2 + 3H_2 \Longrightarrow 2NH_3 ----- K_1$$

 $N_2 + O_2 \Longrightarrow 2NO ----- K_2$
 $H_2 + \frac{1}{2}O_2 \Longrightarrow H_2O ----- K_3$
The equilibrium constant of the reaction

 $2NH_3 + \frac{5}{2}O_2 \iff 2NO + 3 H_2O$, in terms of K_1 , K_2 and K_3 is :

(A)
$$\frac{K_1 K_2}{K_3}$$

(B)
$$\frac{K_1 K_3^2}{K_2}$$

(C)
$$\frac{K_2K_3^3}{K_1}$$

(D)
$$K_1 K_2 K_3$$

DPP-14

Chemistry By AKS Sir

The value of equilibrium constant of 18. the reaction

HI (g)
$$\implies \frac{1}{2}H_2(g) + \frac{1}{2}I_2 \text{ is 8.0}$$

The equilibrium constant of the reaction

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$
 will be:

(A) $\frac{1}{64}$

(B) 16

(C) $\frac{1}{8}$

(D) $\frac{1}{16}$

For the reaction $N_2(g) + O_2(g) \Longrightarrow$ 19. 2NO(g), the equilibrium constant is K₁. The equilibrium constant is K_2 for the reaction $2NO(g) + O_2(g) \rightleftharpoons$ $2NO_2(g)$. What is K for the reaction

$$NO_2(g) \Longrightarrow \frac{1}{2}N_2(g) + O_2(g)$$
?

- (A) $1/(2K_1K_2)$ (B) $1/(4K_1K_2)$
- (C) $[1/K_1K_2]^{1/2}$ (D) $1/(K_1K_2)$

Chemistry By AKS Sir DPP-14

20. For the reaction $N_2 + O_2 \implies 2NO_1$ $\rm K_{\rm c}$ is 100 then $\rm K_{\rm c}$ for reaction.

 $2NO \implies N_2 + O_2$ will be :-

- (A) 0.01 (B) 0.1
- (C) 10
- (D) 100

DPP-14

ANSWER KEY

1. A

2. D

3. D

4. A

5. A

6. C

7. C

8. B

9. B

10. C

11. A

12. C

13. C

14. C

15. C

16. C

17. C

18. A

19. C

20. A