

Chemistry [DPP] **Atomic Structure**

DPP - 6

DPP-6

DPP-6

- The total spin resulting from a d⁷ configuration is:-
 - (A) $\frac{1}{2}$

(B) 2

(C) 1

- (D) $\frac{3}{2}$
- When the value of principal quantum number n is 3, the permitted value of azimuthal quantum numbers ℓ and magnetic quantum numbers 'm' are:-

DPP-6

- 3. $_{36}$ Kr has the electronic configuration $(_{18}$ Ar) $4s^2 3d^{10} 4p^6$. The 39^{th} electron will go into which one of the following sub-levels :-
 - (A) 4f

(B) 4d

(C) 3p

- (D) 5s
- 4. The atomic number of an element is 17, the number of orbitals containing electron pairs in the valency shell is:-
 - (A) 8

(B)2

(C) 3

- (D)6
- 5. The total spin resulting from a d⁹ configuration is:-
 - (A) $\frac{1}{2}$

(B) 2

(C) 1

(D) $\frac{3}{2}$

DPP-6

- 6. The explaination for the presence of three unpaired electrons in the nitrogen atom can be given by:-
 - (A) Pauli's exclusion principle
 - (B) Hund's rule
 - (C) Aufbau's principle
 - (D) Uncertainty principle
- 7. n and ℓ values of an orbital 'A' are 3 and 2, of another orbital 'B' are 5 and 0. The energy of
 - (A) B is more than A
 - (B) A is more than B
 - (C) A and B are of same energy
 - (D) None
- **8.** No. of all subshells of $n + \ell = 7$ is:-
 - (A) 4

(B) 5

(C) 6

(D) 7

DPP-6

- 9. Electronic configuration 頂頂頂頂 has violated:-
 - (A) Hund's rule
 - (B) Pauli's principle
 - (C) Aufbau principle
 - (D) $(n + \ell)$ rule
- 10. A transition metal 'X' has a configuration [Ar] 3d⁵ in its + 3 oxidation state. Its atomic number is:-
 - (A) 22

(B) 26

(C) 28

- (D) 19
- **11.** 4s² is the configuration of the outermost orbit of an element. Its atomic number would be :-
 - (A) 29

(B) 24

(C) 30

(D) 19

DPP-6

- 12. Sum of the paired electrons present in the orbital with $\ell=2$ in all the species Fe²⁺, Co²⁺ and Ni⁺² are:-
 - (A) 9

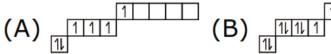
(B) 12

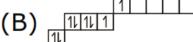
(C) 6

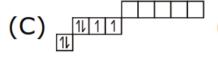
- (D) 15
- 13. What is the electronic configuration of an element in its first excited state which is isoelectronic with O_2
 - (A) [Ne] $3s^2 3p^3 3d^1$
 - (B) [Ne] $3s^2 3p^4$
 - (C) [Ne] $3s^1 3p^3 3d^2$
 - (D) [Ne] $3s^1 3p^5$
- **14.** The quantum number of 20th electron of Fe(Z = 26) ion would be :-
 - (A) 3, 2, -2, $-\frac{1}{2}$
 - (B) $3, 2, 0, \frac{1}{2}$
 - (C) 4, 0, 0, $+ \frac{1}{2}$
 - (D) 4, 1, -1, $+\frac{1}{2}$

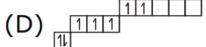
DPP-6

- Which of the following transition **15.** neither shows absorption nor emission of energy in case of Hydrogen atom:-


 - (A) $3p_x \rightarrow 3s$ (B) $3d_{xy} \rightarrow 3d_{yz}$


 - (C) $3s \rightarrow 3d_{xy}$ (D) All the above
- The atomic number of the element **16**. having maximum number of unpaired 3p electrons is (in ground state):-
 - (A) 15


(B) 10


(C) 12

- (D) 8
- Which one represent is in ground **17**. state configuration

DPP-6

- **18.** The maximum probability of finding an electron in the d_{xy} orbital is :-
 - (A) Along the x-axis
 - (B) Along the y-axis
 - (C) At an angle of 45° from the x and y axis
 - (D) At an angle of 90° from the x and y axis
- **19**. Which orbitlal has two angular nodal planes :-
 - (A) s

(B) p

(C) d

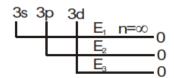
- (D) f
- 20. A filled or half-filled set of p or d orbitals is spherically symmetric. Point out the species which has spherical symmetry:-
 - (A) Na

(B) C

(C) CI-

(D) Fe

DPP-6


- Remaining part of atom except outer 21. orbit is called:-
 - (A) Kernel
- (B) Core
 - (C) Empty space (D) None of these
- The electronic configuration of a 22. dipositive metal ion M²⁺ is 2, 8, 14 and its ionic weight is 58 a.m.u. The number of neutrons in its nucleus would be :-
 - (A) 30

- (B) 32
- (C) 34
- (D) 42
- Which represents the correct pattern 23. of electron filling in Cr :-
 - (A) $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$ (B) $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$
- - (C) $\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$ (D) $\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$

DPP-6

24. For H atom, the energy required for the removal of electron from various sub-shells is given as under:-

The order of the energies would be:-

- (A) $E_1 > E_2 > E_3$
- (B) $E_3 > E_2 > E_1$
- (C) $E_1 = E_2 = E_3$
- (D) None of these
- **25.** In an atom having 2K, 8L, 8M and 2N electrons, the number of electrons

with
$$m = 0$$
; $S = +\frac{1}{2}$ are

(A) 6

(B) 2

(C) 8

(D) 16

DPP-6

ANSWER KEY

1. D

4.

C

7. A

10. B

13. A

16. A

19. C

22. B

25. A

2. A

5. A

8. A

11. C

14. C

17. C

20. C

23. C

3. B

6. B

9. A

12. B

15. D

18. C

21. A

24. C