SAFALTA CLASS An Initiative by SIFTER STREET

CARBON AND ITS COMPOUNDS

CARBON

- Carbon belongs to the group IV of the periodic table.
- It has four electrons in its outermost orbit, so its valancy is four.
- Carbon is a non-metal.

- कार्बन आवर्त सारणी के समूह IV के अंतर्गत आता है।
- इसकी सबसे बाहरी कक्षा में चार इलेक्ट्रॉन हैं, इसलिए इसकी वैधता चार है।
- कार्बन एक गैर-धातु है।

Why so many Carbon Compounds in nature?

- Because <u>carbon</u> is chemically unique.
- Only carbon atoms have the ability to combine with themselves to form long chains

प्रकृति में इतने सारे कार्बन यौगिक क्यों? क्योंकि कार्बन रासायनिक रूप से अद्वितीय है।

Carbon > Sharing // Covalant Bond स्ट सं मोती बन्द

CARBON FORM COVALANT BOND

Single	Double	Triple
bond	bond	bond
H-H	0=0	N≡N
н:н	ö ::Ö	Ň:::Ň

8. Carbon Family: Group 14 (4a)

- Metals, nonmetals, and metalloids
- Bond with many elements by sharing electrons
- Silicon is a semiconductor:
 - 1. Extremely abundant metalloid
 - 2. Used in computer chip manufacturing "Silicon Valley"
- D. 4 valence electrons

Long Chain Creation First organic compound -> Urea. NH2 CO NH2 Size of Carbon is small. 1828, F. Whohler

Carbon Atomic number: 6 Atomic mass: 12.01

What are Allotropes ?

- Allotropes are elements which are chemically identical, but they differ markedly in their physical properties.
- Diamond and Graphite two allotropes of carbon differ in their physical properties.

अपररूप क्या हैं?

- अपररूप ऐसे तत्व हैं जो रासायनिक रूप से समान हैं, लेकिन वे अपने भौतिक गुणों में स्पष्ट रूप से भिन्न हैं।
- डायमंड और ग्रेफाइट कार्बन के दो अपररूप उनके भौतिक गुणों में भिन्न होते हैं।

Allotropes of Carbon

- In nature, pure carbon occur in two forms-
- Diamond $\sqrt{}$
- Graphite √
- (Buckminsterfullerene 🗸
- Carbon Nano Tube \checkmark

Diamond

 $\left(\right)$

₫

Ő

R

(ħ

1

Graphite

Football

Buckminsterfullerene

R

* 207 Hexogon uzy

Carbon Nano Tube

Physical Properties of Diamond and Graphite

Property	Diamond	Graphite
Appearance	Transparent	Black, Shiny
Hardness	Very Hard	Soft, slippery to touch
Thermal Conductivity	Very poor	moderate
Electrical Conductivity	Poor	Good conductor
Density(kg/m3)	<u>351</u> 0	2250 🗸
Uses	Jewellery, drilling	Dry cell, electric arc, lubricant, pencil lead

Why the physical properties of diamond and graphite are so different?

 Due to the difference in the arrangement of carbon atoms in diamond and graphite

हीरे और ग्रेफाइट के भौतिक गुण इतने भिन्न क्यों हैं?

हीरे और ग्रेफाइट में कार्बन परमाणुओं की व्यवस्था में अंतर के कारण।

Hydrocarbons

 Hydrocarbons are compounds of carbon and hydrogen.

The natural source of

hydrocarbons is

petroleum (crude oil)

हाइड्रोकार्बन कार्बन और हाइड्रोजन के यौगिक हैं।

Unsaturated

Hydrocarbon Type	Characteristic Group	Example
ਸੰत੍ [ਮ Saturated Hydrocarbon: Alkanes	No <u>double</u> or Triple Bond	CH ₃ CH ₂ CH ₃ Propane
Unsaturated Hydrocarbon: 3Hat A 1. Alkenes 2. Alkynes	Double Bond Triple Bond	CH₃–CH = CH₂ <i>Propene</i> CH₃–C≡CH <i>Propyne</i>
<u>Aromatic Hydrocarbons:</u>	Benzene ring \mathcal{T} \mathcal{T}	СН3 Methyl Benzene

I) Straight (unbranched chain)

• Example : C₃H8

BRANCHED

Cyclic unsaluraled C₆H₆ (Benezene)

Alkene = Double Bond Alkyne = Triple Bond methane H - C - H

toms	Name	Formula	Structure
1	Me h Methane	mcłh → <u>CH</u>	H-C-H
2	Ethane	e+h ♪ C_H	$\begin{array}{ccc}H&H\\H-C&-C-H\\H&H\end{array}$
3	Propane	brop 3 <u>C.H.</u>	$\begin{array}{ccccc} H & H & H \\ I & I & I \\ H - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$
4	Butane	Bute 72	$\begin{array}{cccccccc} H & H & H & H \\ H - C - C - C - C - C - H \\ H & H & H \end{array}$
5	Pentane	pent A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	Hexane	Hex 77	Н Н Н Н Н Н Н-С-С-С-С-С-С-Н Н Н Н Н Н Н

Table 4.3 Some functional groups in carbon compounds Functional Formula of Hetero functional group atom group Cl/Br -Cl, -Br Halo- (Chloro/bromo) (substitutes for hydrogen atom) 1. Alcohol al 3ter Oxygen 2. Aldehyde midde, 3. Ketone 🗸 O 4. Carboxylic acid C-OH

 $\begin{array}{cccc}
H & H & H & H \\
H & H & H & H \\
H & C - C - C = C - H \\
H & H & H \\
H & H & H
\end{array}$

Functional group	Prefix/Suffix	Example
1. Halogen	Prefix-chloro, bromo, etc.	H H H H H H H H - C - C - C - C + C + C + C + C + C + C
		$\begin{array}{ccc} H & H & H \\ H & H & H \\ H - C - C - C - C - Br \\ H & H & H \end{array} Bromopropane$ Bromopropane
2. Alcohol	Suffix ol	H H H H H H H-C-C-C-C-OH H H H
3. Aldehyde	Suffix - al	H H H H C = O H H H H Propanal
4. Ketone	Suffix - one	$\begin{array}{c} H \\ H \\ H \\ -C \\ -C \\ H \\ H \\ -C \\ -H \\ -H$
5. Carboxylic acid	Suffix - oic acid	H H O H H O H H H H H H H H H
6. Double bond (alkenes)	Suffix - ene	H = H = H H $H = H H$ $H = H$
7. Triple bond (alkynes)	Suffix - yne	H = C = C - H H Propyne

Don't Forget to Like / Comment & Share this video

www.Youtube.com/safaltaclass

www.Facebook.com/safaltaclass

www.Instagram.com/safaltaclass

