

Arbitrary constant :

A constant which remains same in a particular operation, but changes with the change of reference, is called arbitrary constant *e.g.* y = mx + c represents a line. Here *m* and *c* are constants, but they are different for different lines. Therefore, *m* and *c* are arbitrary constants.

Open interval : Let *a* and *b* be two real numbers such that (2)**Closed interval :** Let *a* and *b* be two real numbers such that (1)a < b, then the set of all real numbers lying strictly between a a < b, then the set of all real numbers lying between a and b and *b* is called an open interval and is denoted by]a, b[or (a, b)including a and b is called a closed interval and is denoted b). Thus,]a, b[or by [a, b]. Thus, $[a, b] = \{x \in R : a \le x \le b\}$ $(a, b) = \{x \in R : a < x < b\}$ *a*≺*x*<*b* $a \le x \le b$ Open interval Closed interval (3)**Open-Closed interval :** It is denoted by]a, b] or (a, b] and]a,(4)**Closed-Open interval :** It is denoted by [a, b] or [a, b) and **b**] or $(a, b] = \{x \in R : a < x \le b\}$ $[a, b] \text{ or } [a, b] = \{x \in R : a \le x < b\}$ $a < x \le b$ $a \le x < b$ Closed open interval Open closed interval

INPUT X FUNCTION f: OUTPUT f(x)

Function Notation

Testing for a function by vertical line test :

A relation $f: A \rightarrow B$ is a function or not it can be checked by a graph of the relation. If it is possible to draw a vertical line which cuts the given curve at more than one point then the given relation is not a function and when this vertical line means line parallel to *Y*-axis cuts the curve at only one point then it is a function. Figure (iii) and (iv) represents a function.

Number of functions :

Let X and Y be two finite sets having m and n elements respectively. Then each element of set X can be associated to any one of n elements of set Y.

So, total number of functions from set X to set Y is n^m .

If *A* contains 10 elements then total number of functions defined from *A* to *A* is **[UPSEAT 1992]**

(a)	10	(b)	2 ¹⁰
(c)	10 ¹⁰	(d)	$2^{10} - 1$

f
$$f(y) = \log y$$
, then $f(y) + f\left(\frac{1}{y}\right)$ is equal to [Rajasthan PET 1996]
(a) 2 (b) 1
(c) 0 (d) -1

Given $f(y) = \log y$ $\Rightarrow f(1/y) = \log(1/y),$ then $f(y) + f\left(\frac{1}{y}\right) = \log y + \log(1/y) = \log 1 = 0$.

If
$$f(x) = \log\left[\frac{1+x}{1-x}\right]$$
, then $f\left[\frac{2x}{1+x^2}\right]$ is equal to

[MP PET 1999; Rajasthan PET 1999; UPSEAT 2003]

(a) $[f(x)]^2$ (b) $[f(x)]^3$ (c) 2f(x) (d) 3f(x)

$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$

$$f\left(\frac{2x}{1+x^2}\right) = \log\left[\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right] = \log\left[\frac{x^2+1+2x}{x^2+1-2x}\right]$$
$$= \log\left[\frac{1+x}{1-x}\right]^2 = 2\log\left[\frac{1+x}{1-x}\right] = 2f(x)$$

Domain, Co-domain and Range of Function

If a function f is defined from a set of A to set B then for $f : A \to B$ set A is called the domain of function f and set B is called the co-domain of function f. The set of all f-images of the elements of A is called the range of function f. In other words, we can say Domain = All possible values of x for which f(x) exists. Range = For all values of x, all possible values of f(x).

Domain

- (a) Expression under even root (*i.e.*, square root, fourth root etc.) ≥ 0
- (b) Denominator \neq 0.
- (c) If domain of y = f(x) and y = g(x) are D_1 and D_2 respectively
 - then the domain of $f(x) \pm g(x)$ or f(x).g(x) is $D_1 \cap D_2$.

(d) While domain of
$$\frac{f(x)}{g(x)}$$
 is $D_1 \cap D_2 - \{g(x) = 0\}$.

Domain of $\left(\sqrt{f(x)}\right) = D_1 \cap \{x : f(x) \ge 0\}$

(i) **Range :** Range of y = f(x) is collection of all outputs

f(x) corresponding to each real number in the domain.

- (a) If domain \in finite number of points \Rightarrow range \in set of corresponding f(x) values.
- (b) If domain $\in R$ or R [some finite points]. Then express x in terms of y.

From this find *y* for *x* to be defined (*i.e.*, find the values of *y* for which *x* exists).

If domain \in a finite interval, find the least and greatest value for range using monotonicity

Domain of the function $\frac{1}{\sqrt{x^2-1}}$ is [Roorkee 1987; Rajasthan PET 2000] (a) $(-\infty, -1) \cup (1, \infty)$ (b) $(-\infty, -1] \cup (1, \infty)$ (c) $(-\infty, -1) \cup [1, \infty)$ (d) None of these For domain, $x^2 - 1 > 0 \implies (x - 1)(x + 1) > 0$ $\Rightarrow x < -1 \text{ or } x > 1 \Rightarrow x \in (-\infty, -1) \cup (1, \infty)$

The domain of the function
$$f(x) = \frac{1}{\sqrt{|x| - x|}}$$
 is [Roorkee 1998]

(a)
$$R^+$$
 (b) R^-
(c) R_0 (d) R

For domain, $|x| - x > 0 \implies |x| > x$.

This is possible, only when $x \in R^-$.

Find the domain of definition of
$$f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$$
 [IIT 2001; UPSEAT 2001
(a) (-3, ∞) (b) {-1, -2}
(c) (-3, ∞) - {-1, -2} (d) (- ∞ , ∞)

Here
$$f(x) = \frac{\log_2(x+3)}{x^2+3x+2} = \frac{\log_2(x+3)}{(x+1)(x+2)}$$
 exists if,
Numerator $x + 3 > 0 \implies x > -3$ (i)
and denominator $(x+1)(x+2) \neq 0 \implies x \neq -1, -2$ (ii)
Thus, from (i) and (ii); we have domain of $f(x)$ is $(-3, \infty) - \{-1, -2\}$.

The domain of the function $f(x) = \sqrt{(2 - 2x - x^2)}$ is [BIT Ranchi 1992] (a) $-3 \le x \le \sqrt{3}$ (b) $-1 - \sqrt{3} \le x \le -1 + \sqrt{3}$ (c) $-2 \le x \le 2$ (d) None of these

The quantity square root is positive,

when
$$-1 - \sqrt{3} \le x \le -1 \neq \sqrt{3}$$
.

[MP PET 1996]

If the domain of function $f(x) = x^2 - 6x + 7$ is $(-\infty, \infty)$, then the range of function is

(a)
$$(-\infty, \infty)$$
 (b) $[-2, \infty)$
(c) $(-2, 3)$ (d) $(-\infty, -2)$

$$x^2 - 6x + 7 = (x - 3)^2 - 2$$

Obviously, minimum value is -2 and maximum ∞ .

The domain of the function
$$f(x) = \sqrt{x - x^2} + \sqrt{4 + x} + \sqrt{4 - x}$$
 is
(a) $[-4, \infty)$ (b) $[-4, 4]$
(c) $[0, 4]$ (d) $[0, 1]$

$$f(x) = \sqrt{x - x^2} + \sqrt{4 + x} + \sqrt{4 - x}$$

clearly f(x) is defined if

 $4 + x \ge 0 \implies x \ge -4$

 $4 - x \ge 0 \implies x \le 4$

 $x(1-x) \ge 0 \implies x \ge 0$ and $x \le 1$

:. Domain of $f = (-\infty, 4] \cap [-4, \infty) \cap [0, 1] = [0, 1]$.

Domain of definition of the function $f(x) = \frac{3}{4 - x^2} + \log_{10} (x^3 - x)$, is [AIEEE 2003] (a) (1, 2) (b) (-1, 0) \cup (1, 2) (c) (1, 2) \cup (2, ∞) (d) (-1, 0) \cup (1, 2) \cup (2, ∞)

$$f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x)$$

So,
$$4 - x^2 \neq 0 \implies x \neq \pm \sqrt{4} \implies x \neq \pm 2$$

and $x^3 - x > 0 \implies x(x^2 - 1) > 0 \implies x > 0, |x| > 1$
 $\therefore D = (-1, 0) \cup (1, \infty) - \{2\}$

 $D = (-1, 0) \cup (1, 2) \cup (2, \infty).$

Let
$$y = \frac{1+x^2}{x^2}$$
 $\Rightarrow x^2y = 1+x^2 \Rightarrow x^2(y-1) = 1 \Rightarrow x^2 = \frac{1}{y-1}$

Now since,
$$x^2 > 0 \Rightarrow \frac{1}{y-1} > 0 \Rightarrow (y-1) > 0 \Rightarrow y > 1 \Rightarrow y \in (1,\infty)$$

Trick:
$$y = \frac{1+x^2}{x^2} = 1 + \frac{1}{x^2}$$
. Now since, $\frac{1}{x^2}$ is always > 0 $\Rightarrow y > 1 \Rightarrow y \in (1,\infty)$.

Range of the function
$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$
; $x \in R$ is [IIT Screening 2003]
(a) $(1, \infty)$ (b) $(1, 11/7)$
(c) $(1, 7/3]$ (d) $(1, 7/5]$
 $f(x) = 1 + \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \Rightarrow$ Range $= (1, 7/3]$.

Kinds of Function

(1) One-one function (injection) : A function f: A → B
is said to be a one-one function or an injection, if different elements of A have
different images in B. Thus, f: A → B is one-one.
⇔ a ≠ b ⇒ f(a) ≠ f(b)

for all $a, b \in A \iff f(a) = f(b) \Rightarrow a = b$ for all $a, b \in A$.

(1) Many-one function : A function f: A → B is said to be a many-one function if two or more elements of set A have the same image in B. Thus, f: A → B is a many-one function if there exist x, y ∈ A such that x ≠ y but f(x) = f(y).

In other words, $f: A \rightarrow B$ is a many-one function if it is not a one-one function.

To be a one-to-one function, each *y* value could only be paired with one *x*. Let's look at a couple of graphs.

Look at a y value (for example y = 3)and see if there is only one x value on the graph for it.

For any y value, a horizontal line will only intersection the graph once so will only have one x value

This is a many-to-one function

This then IS a one-to-one function

(1) Onto function (surjection) :

A function $f: A \rightarrow B$ is onto if each element of *B* has its pre-image in *A*.

Therefore, if $f^{-1}(y) \in A$, $\forall y \in B$ then function is onto. In other words, Range of f = Co-domain of f.

Onto*

Onto Functions: A function such that each element of the range is paired with exactly one unique element in the domain.

Onto

Onto

Not onto

(not a function)

Onto Function

Not a surjection

Fig. 1

Fig. 2

Into function :

A function $f: A \to B$ is an into function if there exists an element in *B* having no pre-image in *A*. In other words, $f: A \to B$ is an into function if it is not an onto function

If a function is onto, it cannot be into and vice versa. Thus a function can be one of these four types :

one-one onto (injective & surjective)

II. one-one into (injective but not surjective)

III. many-one onto (surjective but not injective)

IV. many-one into (neither surjective nor injective)

(P) Any function, which is entirely increasing or decreasing in the whole of a domain, is one-one. (P) Any continuous function f(x), which has at least one local maximum or local minimum, is many-one. (P) If any line parallel to the x-axis cuts the graph of the function at most at one point, then the function is one-one and if there exists a line which is parallel to the x-axis and cuts the graph of the function in at least two points, then the function is many-one. (B) Any polynomial function $f: R \rightarrow R$ is onto if degree of f is odd and into if degree of f is even. (B) An into function can be made onto by redefining the co-domain as the range of the original function.

Function $f: N \rightarrow N, f(x) = 2x + 3$ is

- (a) One-one onto
- (c) Many-one onto

[IIT 1973; UPSEAT 1983]
(b) One-one into
(d) Many –one into

[Roorkee 1999]

The function $f: R \to R$ defined by f(x) = (x-1)(x-2)(x-3) is

- (a) One-one but not onto
- (c) Both one-one and onto
- (b) Onto but not one-one(d)Neither one-one nor onto

If $f: R \to R$, then f(x) = |x| is

- (a) One-one but not onto
- (c) One-one and onto

[Rajasthan PET 2000]

(b)Onto but not one-one(d)None of these

Function	Domain	Range	Definition of the function
$\sin^{-1} x$	[-1,1]	$[-\pi/2, \pi/2]$	$y = \sin^{-1} x \Leftrightarrow x = \sin y$
$\cos^{-1} x$	[—1, 1]	[0 , <i>π</i>]	$y = \cos^{-1} x \Leftrightarrow x = \cos y$
$\tan^{-1} x$	$(-\infty,\infty)$ or R	$(-\pi/2, \ \pi/2)$	$y = \tan^{-1} x \Leftrightarrow x = \tan y$
$\cot^{-1} x$	$(-\infty,\infty)$ or R	(0, π)	$y = \cot^{-1} x \Leftrightarrow x = \cot y$
$\operatorname{cosec}^{-1} x$	R – (–1, 1)	$[-\pi/2, \pi/2] - \{0\}$	$y = \csc^{-1}x \Leftrightarrow x = \csc y$
$\sec^{-1} x$	R – (–1, 1)	$[0, \pi] - [\pi/2]$	$y = \sec^{-1} x \Leftrightarrow x = \sec y$

Even function : If we put (-x) in place of x in the given function and

if f(-x) = f(x), $\forall x \in$ domain then function f(x) is called even function.

e.g. $f(x) = e^{x} + e^{-x}$, $f(x) = x^{2}$, $f(x) = x \sin x$, $f(x) = \cos x$, $f(x) = x^{2} \cos x$ all are even function.

Odd function :

If we put (-x) in place of x in the given function and if $f(-x) = -f(x), \ \forall x \in \text{domain then } f(x) \text{ is called odd function.}$ *e.g.* $f(x) = e^x - e^{-x}, \ f(x) = \sin x, \ f(x) = x^3,$ $f(x) = x \cos x, \ f(x) = x^2 \sin x$ all are odd function

Periodic Function

A function is said to be periodic function

if its each value is repeated after a definite interval.

So a function f(x) will be periodic if a positive real number

T exist such that, f(x + T) = f(x), $\forall x \in$ domain.

Here the least positive value of *T* is called the period of the function.

Clearly $f(x) = f(x + T) = f(x + 2T) = f(x + 3T) = \dots e.g.$

 $\sin x$, $\cos x$, $\tan x$ are periodic functions with period 2π , 2π and π respectively.

Some standard results on periodic functions

	Functions	Periods
(1)	$\sin^n x$, $\cos^n x$, $\sec^n x$, $\csc^n x$	π ; if <i>n</i> is even
		2π ; if <i>n</i> is odd or fraction
(2)	$\tan^n x$, $\cot^n x$	$\pi;n$ is even or odd.
(3)	$ \sin x , \cos x , \tan x ,$	π
(3)	$ \cot x , \sec x , \cos x $	
(4)	x - [x]	1
(5)	Algebraic functions e.g., \sqrt{x} , x^2 , x^3 + 5,etc	Period does not exist

^{CP} If f(x) is periodic with period T, then c.f(x) is periodic with period T, f(x + c) is periodic with period T and $f(x) \pm c$ is periodic with period T. where c is any constant.

The second second second of the second of the second second formula to the second the second $\frac{T}{|a|}$.

The If
$$f(x)$$
 is periodic with period T then $\frac{1}{f(x)}$ is also periodic with same period T.

^(S) If f(x) is periodic with period T, $\sqrt{f(x)}$ is also periodic with same period T.

If f(x) is periodic with period T, then a f(x) + b, where $a, b \in R (a \neq 0)$

is also a periodic function with period T.

If f(x), $f_i(x)$, $f_i(x)$ are periodic functions with periods T_i , T_j , T_j respectively then; we have

$$h(x) = af_1(x) \pm bf_2(x) \pm cf_3(x)$$
, has period as,

$$=\begin{cases} \text{L.C.M.of} \{T_1, T_2, T_3\}; & \text{if } h(x) \text{ is not an even function} \\ \frac{1}{2} \text{L.C.M. of} \{T_1, T_2, T_3\}; & \text{if } h(x) \text{ is an even function} \end{cases}$$

The period of the function $f(x) = 2\cos\frac{1}{3}(x - \pi)$ is [DCE 1998]

$$f(x) = 2\cos\frac{1}{3}(x - \pi) = 2\cos\left(\frac{x}{3} - \frac{\pi}{3}\right)$$

Now, since $\cos x$ has period 2π

$$\Rightarrow \cos\left(\frac{x}{3} - \frac{\pi}{3}\right) \text{ has period } \frac{2\pi}{\frac{1}{3}} = 6\pi$$
$$\Rightarrow 2\cos\left(\frac{x}{3} - \frac{\pi}{3}\right) \text{ has period } = 6\pi.$$

$$\therefore \sin x$$
 has period $= 2\pi \Rightarrow \sin \frac{\pi x}{2}$ has period $= \frac{2\pi}{\frac{\pi}{2}} = 4$

$$\because \cos x \text{ has period} = 2\pi \Rightarrow \cos \frac{\pi x}{3} \text{ has period} = \frac{2\pi}{\frac{\pi}{3}} = 6 \Rightarrow 2\cos \frac{\pi x}{3} \text{ has period} = 6$$

:
$$\tan x$$
 has period $= \pi \implies \tan \frac{\pi x}{4}$ has period $= \frac{\pi}{\frac{\pi}{4}} = 4$.

L.C.M. of 4, 6 and 4 =12, period of f(x) = 12.

The period of $|\sin 2x|$ is

Here
$$|\sin 2x| = \sqrt{\sin^2 2x} = \sqrt{\frac{(1 - \cos 4x)}{2}}$$

Period of
$$\cos 4x$$
 is $\frac{\pi}{2}$. Hence, period of $|\sin 2x|$ will be $\frac{\pi}{2}$

Trick :
$$\therefore$$
 sin x has period = $2\pi \Rightarrow \sin 2x$ has period = $\frac{2\pi}{2} = \pi$

Now, if
$$f(x)$$
 has period p then $|f(x)|$ has period $\frac{p}{2} \Rightarrow |\sin 2x|$ has period $=\frac{\pi}{2}$

If f(x) is an odd periodic function with period 2, then f(4) equals $\begin{bmatrix} 11T & 1991 \end{bmatrix}$ (a) 0 (b) 2 (c) 4 (d) - 4

Given, f(x) is an odd periodic function. We can take $\sin x$, which is odd and periodic.

Now since, $\sin x$ has period = 2 and f(x) has period = 2.

So, $f(x) = \sin(\pi x) \Rightarrow f(4) = \sin(4\pi) = 0$.

The period of the function $f(x) = \sin^2 x$ is [UPSEAT 1991, 2002; AIEEE 2002]

(a)
$$\frac{\pi}{2}$$
 (b) π
(c) 2π (d) None of these
 $\sin^2 x = \frac{1 - \cos 2x}{2} \Rightarrow \text{Period} = \frac{2\pi}{2} = \pi.$

Composite Function

If $f: A \to B$ and $g: B \to C$ are two function then the composite function of f and g, gof $A \to C$ will be defined as $gof(x) = g[f(x)], \forall x \in A$ (1) **Properties of composition of function :** (i) f is even, g is even \Rightarrow fog even function. (ii) f is odd, g is odd \Rightarrow fog is odd function. (iii) f is even, g is odd \Rightarrow fog is even function. (iv) f is odd, g is even \Rightarrow fog is even function

Composite of functions is not commutative *i.e.*, $fog \neq gof$ (vi) Composite of functions is associative *i.e.*, (fog)oh = fo(goh)(vii) If $f: A \to B$ is bijection and $g: B \to A$ is inverse of f. Then $fog = I_R$ and $gof = I_A$. where, I_A and I_B are identity functions on the sets A and B respectively. (viii) If $f: A \to B$ and $g: B \to C$ are two bijections, then $gof: A \to C$ is bijection and $(gof)^{-1} = (f^{-1}og^{-1})$. (ix) $fog \neq gof$ but if , fog = gof then either $f^{-1} = g$ or $g^{-1} = f$ also, (fog)(x) = (gof)(x) = (x).

 (\mathbf{v})

If
$$f: R \to R, f(x) = 2x - 1$$
 and $g: R \to R$,

$$g(x) = x^2$$
 then $(gof)(x)$ equals [Rajasthan PET 1987]

(a)
$$2x^2 - 1$$
 (b) $(2x - 1)^2$
(c) $4x^2 - 2x + 1$ (d) $x^2 + 2x - 1$

 $gof(x) = g\{f(x)\} = g(2x-1) = (2x-1)^2$.

If
$$f: R \to R, f(x) = (x+1)^2$$
 and $g: R \to R, g(x) = x^2 + 1$

then (fog)(-3) is equal to [Rajasthan PET 1999] (a) 121 (b) 144 (c) 112 (d) 11

$$fog(x) = f\{g(x)\} = f(x^{2} + 1) = (x^{2} + 1 + 1)^{2} = (x^{2} + 2)^{2}$$
$$\Rightarrow fog(-3) = (9 + 2)^{2} = 121 .$$

If
$$g(x) = x^{2} + x - 2$$
 and $\frac{1}{2}(gof)(x) = 2x^{2} - 5x + 2$, then $f(x)$ is equal to
(a) $2x - 3$
(b) $2x + 3$
(c) $2x^{2} + 3x + 1$
(d) $2x^{2} - 3x - 1$

$$g(x) = x^{2} + x - 2 \implies (gof)(x) = g[f(x)] = [f(x)]^{2} + f(x) - 2$$

Given,
$$\frac{1}{2}(gof)(x) = 2x^2 - 5x + 2$$

$$\therefore \quad \frac{1}{2} [f(x)]^2 + \frac{1}{2} f(x) - 1 = 2x^2 - 5x + 2$$

$$\Rightarrow [f(x)]^{2} + f(x) = 4x^{2} - 10x + 6$$

$$\Rightarrow f(x)[f(x)+1] = (2x-3)[(2x-3)+1] \Rightarrow f(x) = 2x-3.$$

If $f(x) = \frac{2x-3}{x-2}$, then $[f\{f(x)\}]$ equals Rajasthan PET 1996]

 $2\left(\frac{2x-3}{x-2}\right) - 3$ f[f(x)] $\left(\frac{2x-3}{x-2}\right) - 2$

If
$$f(x) = \frac{2x+1}{3x-2}$$
, then $(fof)(2)$ is equal to [Kerala (Engg.) 2002]
(a) 1 (b) 3
(c) 4 (d) 2
Here $f(2) = \frac{5}{4}$
Hence $(fof)(2) = f(f(2)) = f(\frac{5}{4}) = \frac{2 \times \frac{5}{4} + 1}{3 \times \frac{5}{4} - 2} = 2$.
Inverse Function

If $f : A \rightarrow B$ be a one-one onto (bijection) function, then the mapping $f^{-1}: B \to A$ which associates each element $b \in B$ with element $a \in A$, such that f(a) = b, is called the inverse function of the function $f: A \rightarrow B$ $f^{-1}: B \to A, f^{-1}(b) = a \Longrightarrow f(a) = b$ In terms of ordered pairs inverse function is defined as $f^{-1} = (b, a)$ if $(a, b) \in f/a$

Note : **I** For the existence of inverse function, it should be one-one and onto.

- *Inverse of a bijection is also a bijection function.*
- *Inverse of a bijection is unique.*
- (f) = f
- *If f and g are two bijections such that (gof) exists then (gof) = f og .*
- ^(C) If $f: A \rightarrow B$ is a bijection then $f: B \rightarrow A$ is an inverse function of f. f of = I_A and fof = I_A . Here I_A is an identity function on set A, and I_A is an identity function on set B.

If $f: R \to R$ is given by f(x) = 3x - 5, then $f^{-1}(x)$ [IIT Screening 1998]

(a) Is given by $\frac{1}{3x-5}$

(c)

(b) Is given by
$$\frac{x+5}{3}$$

(d) Does not exist because f is not onto

Clearly, $f: R \rightarrow R$ is a one-one onto function. So, it is invertible.

Does not exist because *f* is not one-one

Let
$$f(x) = y$$
. then, $3x - 5 = y \Rightarrow x = \frac{y + 5}{3} \Rightarrow f^{-1}(y) = \frac{y + 5}{3}$
Hence, $f^{-1}(x) = \frac{x + 5}{3}$.

(d) $\frac{1}{3}(x-4)$

Let $f: R \to R$ be defined by f(x) = 3x - 4, then $f^{-1}(x)$ is [UPSEAT 1993]

(a) 3x + 4 (b) $\frac{1}{3}x - 4$

(c) $\frac{1}{3}(x+4)$

$f(x) = 3x - 4 = y \implies y = 3x - 4$

$\Rightarrow x = \frac{y+4}{3} \Rightarrow f^{-1}(y) = \frac{y+4}{3} \Rightarrow f^{-1}(x) = \frac{x+4}{3}$

If $f:[1,\infty) \to [1,\infty)$ is defined as $f(x) = 2^{x(x-1)}$ then $f^{-1}(x)$ is equal to [IIT Screening 1999]

(a)
$$\left(\frac{1}{2}\right)^{x(x-1)}$$

(c) $\frac{1}{2}\left(1 - \sqrt{1 + 4\log_2 x}\right)$

(b) $\frac{1}{2} \left(1 + \sqrt{1 + 4 \log_2 x} \right)$

(d) Not defined

Given
$$f(x) = 2^{x(x-1)} \Rightarrow x(x-1) = \log_2 f(x)$$

$$\Rightarrow x^{2} - x - \log_{2} f(x) = 0 \Rightarrow x = \frac{1 \pm \sqrt{1 + 4 \log_{2} f(x)}}{2}$$

Only
$$x = \frac{1 + \sqrt{1 + 4 \log_2 f(x)}}{2}$$
 lies in the domain

$$\therefore \qquad f^{-1}(x) = \frac{1}{2} [1 + \sqrt{1 + 4 \log_2 x}]$$