
SAFALTA CLASS An Initiative by 3147 3 JICT

Introduction to waves

A wave is a disturbance in a medium which moves from one point to another and carries energy without a net movement of particles.

तरंग ऊर्जा या विक्षोभों के संचरण की वह विधि है जिसमें माध्यम के कण अपने स्थान पर ही कम्पन करते हैं तथा ऊर्जा एक स्थान से दूसरे स्थान तक आगे जाती है।"

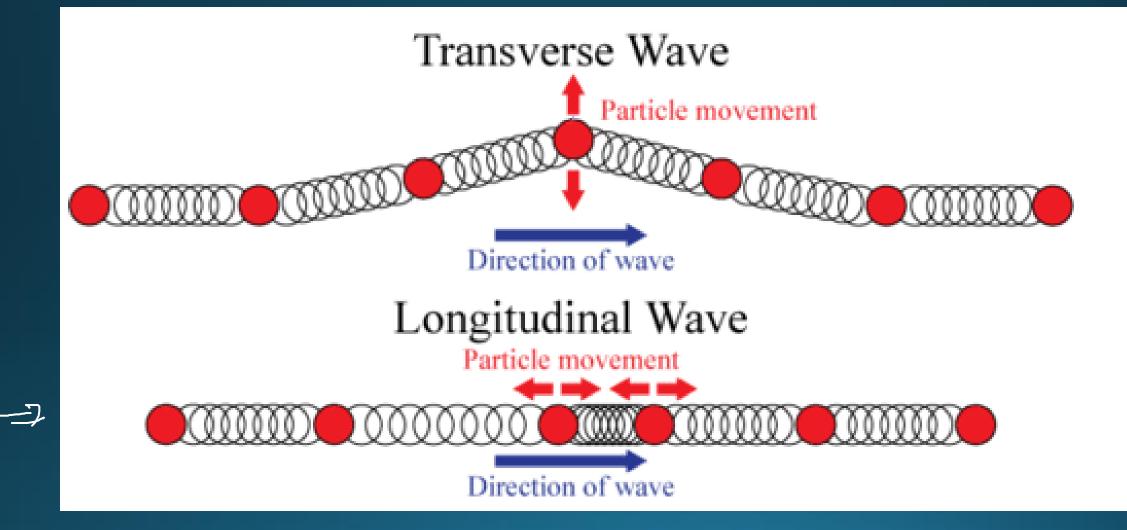
E.g: Rubber cork on the water that go water creates a ripple.

<u>(i) Transverse Waves (अनुप्रस्थ तरंगे) :</u>

Particle motion is perpendicular to the direction of wave motion. This type of wave is a mechanical wave.

यदि माध्यम के कण तरंग की गति की दिशा के लंबवत् दोलन करते हैं तो ऐसी तरंग को हम उसे अनुप्रस्थ तरंग कहते हैं।

E.g: Light and Mexican wave in a stadium.


~(ii) Longitudinal waves (अनुदैर्ध्य तरंगे)

Particles travel parallel to the direction of wave motion, by means of successive compressions or elongations. This is also a mechanical wave.

यदि माध्यम के कण तरंग की गति की दिशा के दिशा में ही दोलन करते हैं तो उसे अनुदैर्ध्य तरंग कहते हैं।

E.g: <u>Sound</u> waves in air.

A vibration that propagates as an audible wave of pressure, through a medium such as a gas, liquid or solid.

ध्वनि तरंगों की प्रकृति अनुदैर्ध्य यांत्रिक होती है। इसका अर्थ यह है कि ध्वनि के

संचरण के लिए कि.मी माध्यम (रोम हत रोम) की भारश्यकरा तेनी है।

Propagation Of Sound

Sound Needs A Medium To Travel MEDIA

Sound Waves Are Longitudinal Waves

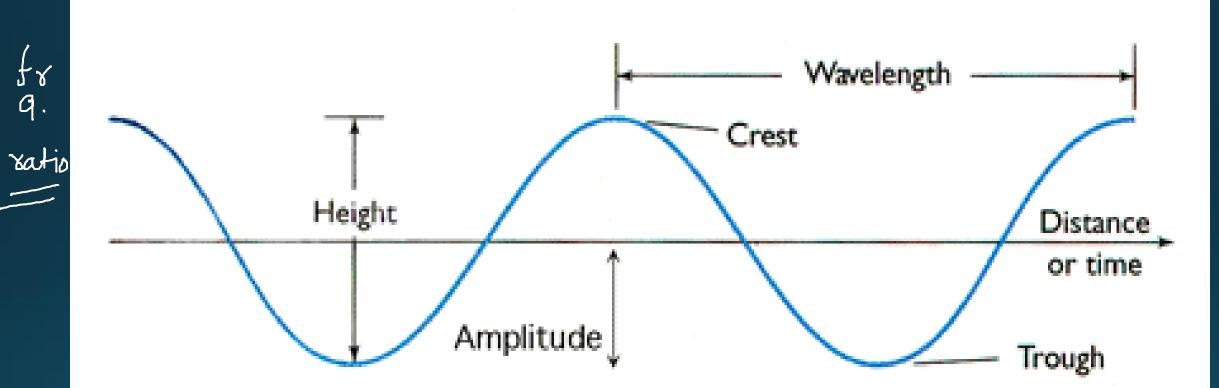
Speed Of Sound In Different Media

Reflection Of Sound ध्वनि का परावर्तन

Reverberation गांग

· Wavelength (Length → unit → meter) The distance between two successive crests or troughs (or) successive compressions and rarefactions is called as wavelength (λ). The SI unit of wavelength is meter (m). जब कोई तरंग कम्पन्न या दोलन करती है तो एक दोलन या कम्पन्न होने में जितनी दूरी कण तय करता है उस दूरी को तरंग दैर्ध्य कहते है। याएक दोलन में कण द्वारा तय की गयी दूरी को तरंग दैर्ध्य कहते है। -> meter

■ <u>Time period</u>


Time taken by two consecutive compressions or rarefactions to cross a fixed point is called a Time period (T). The SI unit of time in seconds (s).

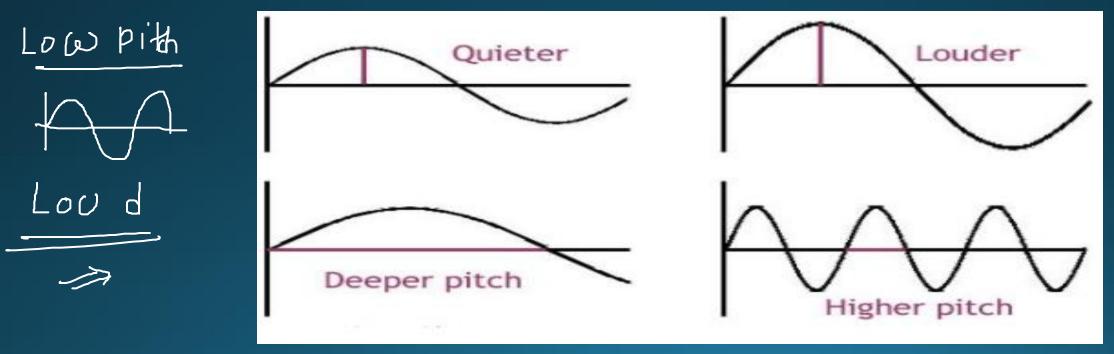
एक निश्चित बिंदु को पार करने के लिए लगातार दो संकोचन या विरल द्वारा लिए गए समय को

समयावधि (T) कहा जाता है। सेकंड समय की SIइकाई

Amplitude 3-114124 The magnitude of disturbance in a medium on either side of the mean value is called an amplitude (A). lsec Frequency (Stiglid) The number of compressions or rarefactions per unit time is called frequency (v). The SI unit of frequency is Hertz. The SI unit is Hertz (s-1). एक सेकंड में तरंग द्वारा लगाए गए चक्करों की संख्या को आवृत्ति कहते हैं आवृत्ति का मात्रक हर्टज होता है। $v = \frac{1}{T}$ レキョンシ Speed (v), wavelength (λ) and frequency (v) are related as v= λv $Vel = wL \times f Yeq$

 $\begin{array}{c} \text{W.L.} = 900 \text{ hmV} \quad \sqrt{2} \quad \int f_{\text{XCQ.}} \quad \frac{1}{\text{W.L.}} \\ \text{W.L} = 1000 \text{ hmV} \quad \frac{1}{\text{W.L.}} \end{array}$

 $\frac{f_1}{f_2} = \frac{W \cdot L_{\eta}}{W \cdot L_{\eta}} =$ \rightarrow


 $\frac{|800}{900} = 2:|$

The number of compressions or rarefactions per unit time. Directly proportional to frequency.

तारत्व ध्वनि का वह लक्षण होता है जिसके कारण कोई ध्वनि हमको पतली है मोटी सुनाई पड़ती है।

जैसे मच्छरों की भिनभिनाहट तथा लड़कियों की आवाज का पतला होना।

Higher force → higher amplitude → louder sound

• The amount of sound energy flowing per unit time through a unit area is called the intensity of sound.

Note and Tone

A sound of a single frequency is called a tone. A sound produced with a mixture of several frequencies is called a note.

Speed of sound

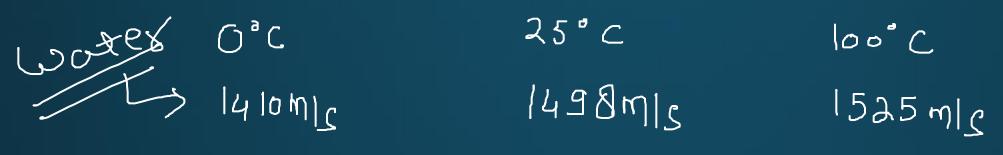
 Sound travels through different media with different speeds. Speed of sound depends on the properties of the medium: pressure, density and temperature

लम - गरत - भग

- Speed of sound: Solids > Liquids > Gases
- Speed of sound in air = 331 m/s at o°C and 344 m/s at 22°C

Factors Affecting the Speed of Sound

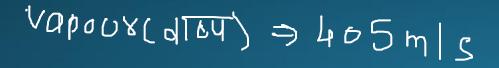
When the medium is dense, the molecules in the medium are closely packed which means that the force required by the molecules to vibrate is more. Therefore, the speed of sound decreases as the density of the medium increases. Elard Spred


• <u>Temperature of the medium</u> ((المالعة المعالم) The temperature of the medium and the sound waves are directly proportional to each other. Therefore, as the temperature increases, the speed of sound increases.

Speed of Sound in Solid

Speed of sound in solid is 6000 meters per second while the speed of sound in steel is equal to 5100 meters per second.

Another interesting fact about the speed of the sound is that sound travels 35 times faster in diamonds than in the air.



Speed of Sound in Water

The speed of sound in water is 1480 metres per second.

It is also interesting to know that the speed may vary between 1450 to 1498 meters per second in distilled water whereas

the speed is 1531 meters per second in seawater when the temperature is between $20^{\circ}C$ to $25^{\circ}C$.

Speed of Sound in Gas

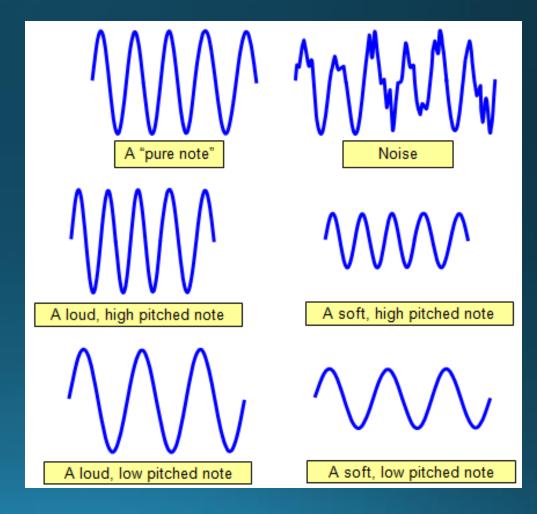
We should remember that the speed of sound is independent of the density of the medium when it enters a liquid or solid.

Since gases expand to fill the given space, density is quite uniform irrespective of the type of gas.

This clearly isn't the case with solids and liquids.

Table 12.1: Speed of sound in different media at 25 °C		
State	Substance	Speed in m/s
Solids	Aluminium Nickel	6420 6040
	Steel Iron	5960 5950
	Brass Glass (Flint)	4700 3980
Liquids	Water (Sea) Water (distilled) Ethanol Methanol	1531 1498 1207 1103
Gases	Hydrogen Helium Air Oxygen Sulphur dioxide	1284 965 346 316 213

- Echo (의 전리) The phenomenon where a sound produced is heard again due to reflection is called an echo.
 - E.g. Clapping or shouting near a tall building or a mountain.
- To hear distinct echo sound, the time interval between original and reflected sound must be at least 0.1s.
- Minimum distance for obstruction or reflective surface to hear an echo should be 17.2 m.


20HZ - 2000HZ (20KHZ)

- <u>Audible and inaudible sounds</u> (अप्ट्री)
- Audible range = 20Hz to 20kHz known as the Sonic range.
- Below 20 Hz (inaudible) \rightarrow infrasonic range
- Above 20 kHz (inaudible) \rightarrow Ultrasonic range

Noise and music

 Sounds with the same pitch and loudness can be distinguished based on the quality. Music is pleasant to the ears while noise is not.

Unpleasant sounds are called as noise.

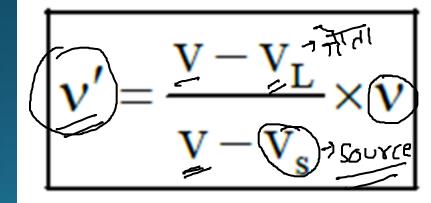
Ultrasonic sounds

 Ultrasonic sounds are high-frequency sound having a frequency greater than 20kHz (inaudible range).
 シネッドロット

Applications of Ultrasound

(i) Scanning images of human organs
 (ii) Detecting cracks in metal blocks
 (iii) Cleaning parts that are hard to reach
 (iv) Navigating, communicating or detecting objects on or under the surface
 of the water (SONAR). (Sound Navigation & Ranging)

• $2d=v\times t$. This method is called echo-location or echo ranging.


- <u>Reverberation</u> (III)

- Persistence of sound because of multiple reflections is called reverberation.
- Examples: Auditorium and <u>a big hall</u>.

• E.g: Fiber board and rough plaster.

DOPPLER EFFECT

- According to Doppler's effect, whenever there is a relative motion between a source of sound and listener, the apparent frequency of sound heard by the listener is different from the actual frequency of sound emitted by the source
- Example: If one is standing on a street corner and an ambulance approaches with its siren blaring, the sound of the siren steadily gains in pitch as it comes closer and then, as it passes, the pitch suddenly lowers.
- Apparent frequency,
 अभामी आर्त्त

* Applications:-

(i) To know the velocity of Planes. Liis Novigation. has (2) - farring offern (i) cultoteq ii) cultoteq iii) Sudfi Suffi Sudfi Suffi Suf (iii) Polevization (iv) Reflection

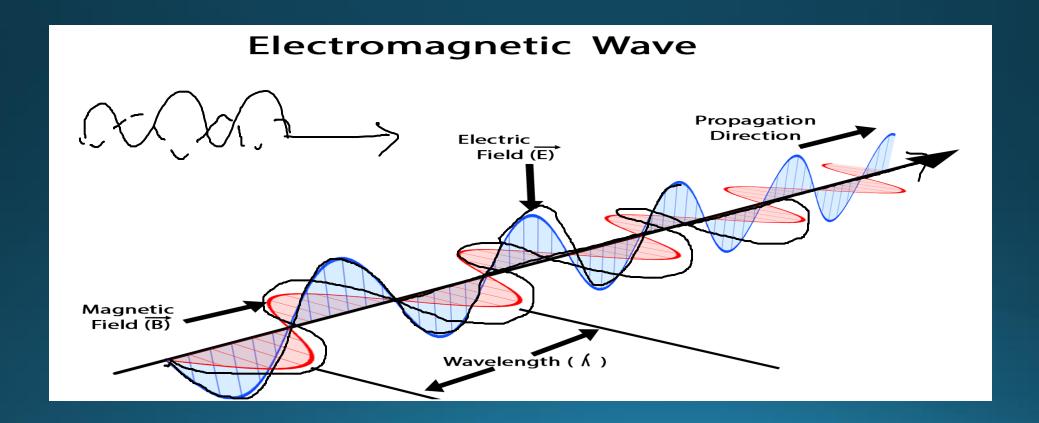
MAGNETIC 27 WAVES (दिंधुत चुम्ब्रीरा तरेग)

Maxwell's Equations

1.
$$\oint \mathbf{E} \cdot d\mathbf{A} = Q / \varepsilon_0$$

2. $\oint \mathbf{B} \cdot d\mathbf{A} = 0$
3. $\oint \mathbf{E} \cdot d\mathbf{l} = \frac{-d \Phi_B}{dt}$
4. $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d \Phi_B}{dt}$

(Gauss's Law for electricity)


(Gauss's Law for magnetism)

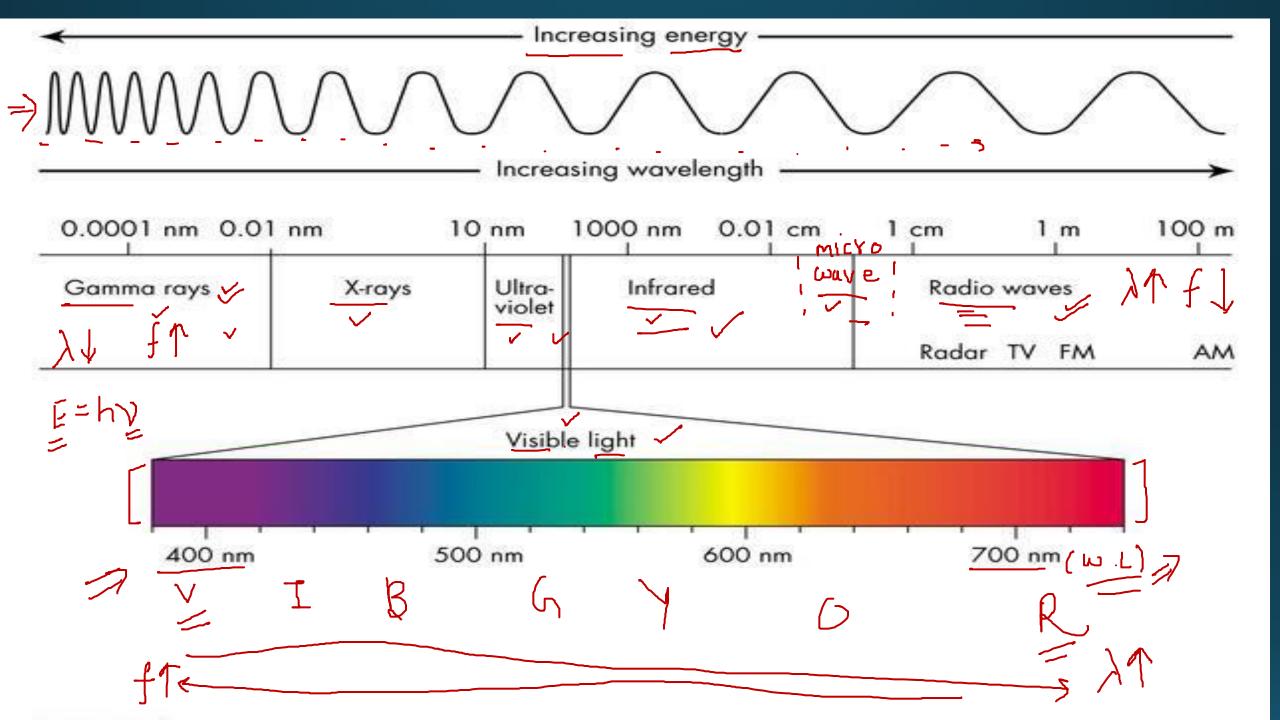
(Faraday's Law)

(Ampere - Maxwell Law)

Electromagnetic Waves

Electromagnetic waves are those waves in which there are sinusoidal variations of electric and magnetic field vectors at right angles to each other as well as at right angles to the direction of wave propagation.

• The speed c of the electromagnetic wave in vacuum is related to μ and ε (the free space permeability and permittivity constants) as follows:


$$= \frac{1}{\sqrt{\mu_{o}\varepsilon_{o}}}$$

$$C = \frac{1}{\sqrt{\mu_{o}\varepsilon_{o}}}$$

$$C = 3\chi Io\partial M Is$$

$$= \frac{1}{\sqrt{\mu_{o}\varepsilon_{o}}}$$

$$= \frac{1}{\sqrt$$

<u>Different Types of Electromagnetic</u> <u>Waves</u>

- Radio waves 🎸

Radio waves are produced by the accelerated motion of charges in conducting wires.

They are used in radio and television communication systems.

They are generally in the frequency range from 500 kHz to about 1000 MHz.

Microwaves

Microwaves (short-wavelength radio waves), with frequencies in the gigahertz (GHz) range.

They are produced by special vacuum tubes (called klystrons, magnetrons and Gunn diodes).

Due to their short wavelengths, they are suitable for the radar systems used in aircraft navigation.

• Infrared waves Infrared waves are sometimes referred to as heat waves.

Infrared waves are produced by hot bodies and molecules.

Infrared radiation plays an important role in maintaining the earth's warmth or average temperature through the greenhouse effect.

<u>Visible rays</u>

It is the part of the spectrum that is detected by the human eye.

It runs from about 4×10^{14} Hz to about 7×10^{14} Hz or a wavelength range of about 700 – 400 nm.

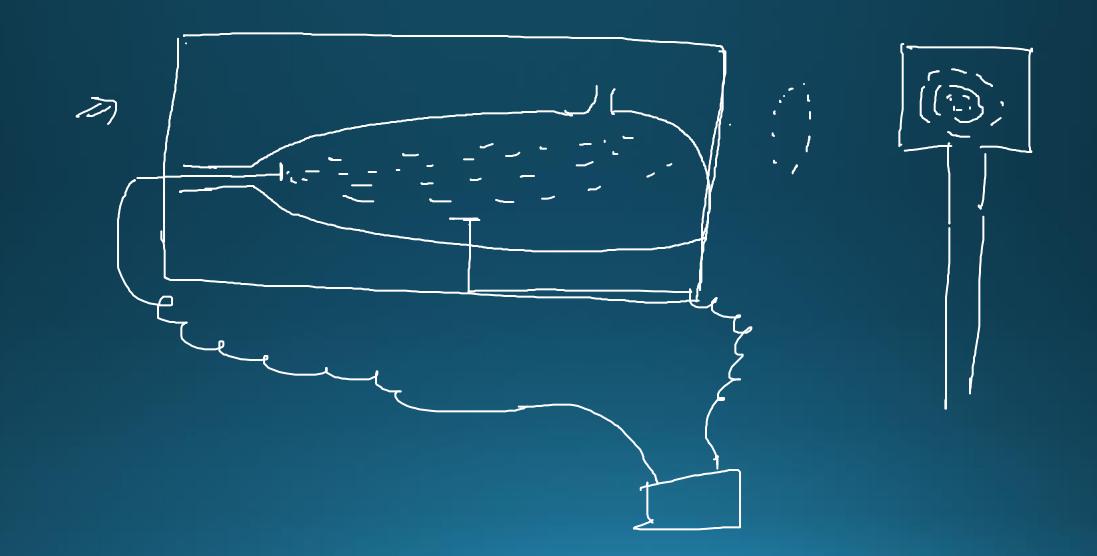
Visible light emitted or reflected from objects around us provides us information about the world.

<u>Ultraviolet rays</u>

It covers wavelengths ranging from about 4×10^{-7} m (400 nm) down to 6×10^{-10} m (0.6 nm).

Ultraviolet (UV) radiation is produced by special lamps and very hot bodies.

The sun is an important source of ultraviolet light.


Ultraviolet radiations can be focused into very narrow beams for high precision applications such as LASIK (Laser assisted in situkeratomileusis) eye surgery.

Ultraviolet lamps are used to kill germs in water purifiers

X-rays Roen + genIt covers wavelengths from about 10^{-8} m (10 nm) down to 10^{-13} m (10-4 nm).

One common way to generate X-rays is to bombard a metal target by high energy electrons.

X-rays are used as a diagnostic tool in medicine and as a treatment for certain forms of cancer.

Properties of X-Rays

The X-Rays properties are given below:

- They have a shorter wavelength of the <u>electromagnetic spectrum</u>.
- Requires high voltage to produce X-Rays.
- They are used to capture the human skeleton defects.
- They travel in a straight line and do not carry an electric charge with them.
- They are capable of travelling in a vacuum.

Gamma rays \longrightarrow $f\uparrow$ The wavelengths of Gamma rays are from about 10^{-10} m to less than 10^{-14} m.

Gamma rays are produced in nuclear reactions and also emitted by radioactive nuclei.

They are used in medicine to destroy cancer cells.

Don't Forget to Like / Comment & Share this video

www.Youtube.com/safaltaclass

www.Facebook.com/safaltaclass

www.Instagram.com/safaltaclass

