

CLASS - 1

UNITS

र DIMENSIONS

Fundamental and Derived Quantities (मौलिक और व्यत्पन्न मात्राएँ)

- The quantities that are independent of other quantities are called **fundamental quantities**.
- अन्य राशियों से स्वतंत्र होने वाली राशियों को मौलिक राशियाँ कहा जाता है।
- The units that are used to measure these fundamental quantities are called fundamental units.
- इन मूलभूत मात्राओं को मापने के लिए जिन इकाइयों का उपयोग किया जाता है, उन्हें मूलभूत इकाइयाँ कहा जाता है
- There are four systems of units namely <u>C.G.S, M.K.S, F.P.S</u>, and <u>SI.</u> C.G.S, M.K.S, F.P.S, और SI जैसी इकाइयों की चार प्रणालियाँ हैं।

• The quantities that are derived using the fundamental quantities are called **derived quantities**.

मौलिक मात्राओं का उपयोग करके जो मात्राएँ प्राप्त की जाती हैं, उन्हें व्युत्पन्न मात्राएँ कहा जाता है।

• The units that are used to measure these derived quantities are called **derived units**.

इन ट्युत्पन्न मात्राओं को मापने के लिए उपयोग की जाने वाली इकाइयों को ट्युत्पन्न इकाइयाँ कहा ज

Fundamental	System of units		
Quantity	©g.s. ~/	<u>M.K.S</u> .	<u>F.P.S</u> .
Length	centimeter	Meter	foot
Mass द्वाभान	gram	Kilogram	pound
Time	second	Second	second

7 FUNDAMENTAL UNITS (ST)

Physical quantity	Unit	Symbol
Length	Meter 🗸	m
Mass G C 4 MIZ	kilogram	kg
Time	second	S
Electric current	ampere	Α
Thermodynamic temperature	kelvin	K
Intensity of light पदानी की हिंदी	candela	cd
Quantity of substance	mole	mol

Supplementary Quantities: The First And First

Plane angle ✓	radian 🗸	rad
Solid angle	steradian steradian	sr

DERIVED UNITS: (ct. 1240-421/24): with the help of Fundamental units.

MACRO Prefixes

MICRO Prefixes

Kilo (K) 10³

Mega (M) 10⁶ ✓

Giga (G) 10⁹ ✓

Tera (T) 10¹²

Peta (P) 10¹⁵

Exa (E) 10¹⁸

Zetta (Z) 10²¹

Yotta (y) 10²⁴

$$(\mu) 10^{-6} \checkmark$$

nano (n) 10⁻⁹

pico (p) 10⁻¹²

femto (f) 10⁻¹⁵ (Ft xmi)

atto (a) 10⁻¹⁸

zepto (z) 10⁻²¹

yocto (y) 10⁻²⁴

Important Small Units Of Length: كالمالة

Important Large Units of Length:

① IAU (Astrounomical Unit):- Average Bistance blw (1 とは記げ出 らわ) => SUN x earth.

1 Un = 1.42ex/0, W

(got an MIJA)

Light Year: - Distance traveled by light in 1 year.

1 LY = 9.46 × 1015 m (5 might ab)

Parsec: Lorgest unit of Distance.

4th on Hate of Distance.

2 1 Parsec = 3.26 Ly | Significance.

1 | Parsec = 3.08 × 10 16 W

Paralletic Second &

Ls porsec at Full form-

Some Important Conclusions:

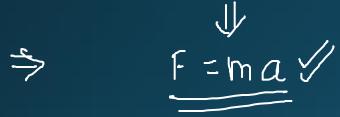
- Angstrom is the unit of length used to measure the wavelength of light. 1 Å = 10⁻¹⁰ m.
- Fermi is the unit of length used to measure nuclear distances. 1 Fermi = 10⁻¹⁵ meter.
- A light year is the unit of length for measuring astronomical distances.
- Light year = distance traveled by light in 1 year = 9.4605 × 10¹⁵ m.
- Astronomical unit = Mean distance between the sun and earth = 1.5 \times 10¹¹ m.

- कुछ महत्वपूर्ण निष्कर्ष:
- एंगस्ट्रॉम प्रकाश की तरंग दैर्ध्य को मापने के लिए उपयोग की जाने वाली लंबाई की इकाई है। 1 एंगस्ट्रॉम = 10^-10 मीटर।
- फर्मी परमाणु दूरी को मापने के लिए इस्तेमाल की जाने वाली लंबाई की इकाई है। 1 फर्मी = 10^-15 मीटर।
- खगोलीय दूरी मापने के लिए एक प्रकाश वर्ष लंबाई की इकाई है।
- प्रकाश वर्ष = 1 वर्ष में प्रकाश की दूरी = 9.4605 × 10^15 मीटर।
- खगोलीय इकाई = सूर्य और पृथ्वी के बीच की दूरी = 1.5 × 10^11 मीटर।

• Parsec = 3.26 light years = 3.084×10^{16} m

• Barn is the unit of area for measuring scattering cross-section of collisions.

1 barn = 10^{-28} m².


• Chronometer and metronome are time measuring instruments. The quantity having the same unit in all the systems of units is time.

• पारसेक = 3.26 प्रकाश वर्ष = 3.084 × 10^16 मीटर

• क्रोनोमीटर और मेट्रोनोम समय मापने के उपकरण हैं। सभी इकाइयों के सिस्टम में एक ही इकाई होने वाली मात्रा समय है।

Dimensions

- Dimensions of a physical quantity are the powers to which the fundamental units are raised to obtain one unit of that quantity.
- भौतिक मात्रा के आयाम वे हैं, जिनके लिए मौलिक इकाइयों को उस मात्रा की एक इकाई प्राप्त करने के लिए उठाया जाता है।

F=ma// [] caritellett, A.B...

- ① Length → m → [L]
- ⑤ May → Kg → [M]
- (3) Time > SIC => []
- 4) Temp. -> K => [8, K]
- B Corrent Amp > [A]
- (b) Lum. Intensity > cd > [cd]
- f) Am. of Subst. -> mol => [mol] [x

Area =
$$lxb = mxm = m^2$$

$$= [L][L] = [L^2]$$

$$Volume = m^3 = [L^3]$$

Pensity (E17cd):-
$$D = \frac{m}{V} = \frac{[m]}{[L^3]} = [ML^{-3}]$$

$$G = 7$$

$$F = G \frac{m_1 m_2}{\gamma^2}$$

$$g = ? \rightarrow [17^{-1}]$$

$$\mathcal{E}_{0} = 7 \qquad \Rightarrow f = \frac{1}{4 \kappa \mathcal{E}_{0}} \frac{9.92}{82}$$

Distance Gal

bisplacement I TEMATICS
Speed

Speed Jewiny

Acceleration 1

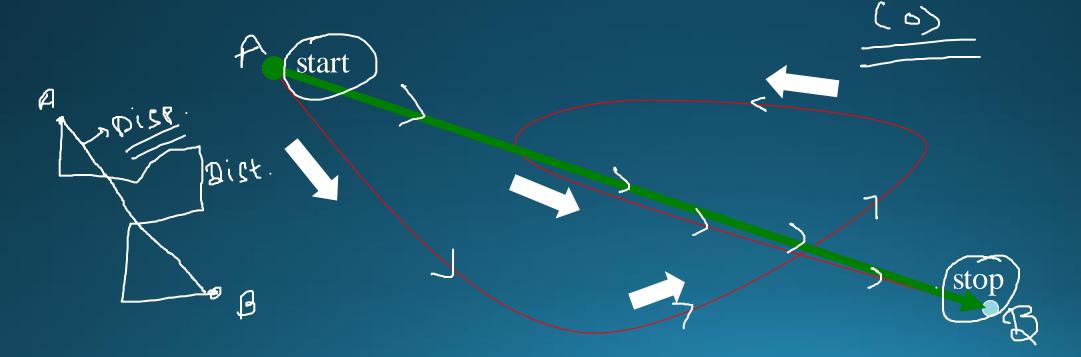
Kinematics definitions

Kinematics – branch of physics; study of motion

Position (x) – where you are located

 Distance (d) – how far you have traveled, regardless of direction

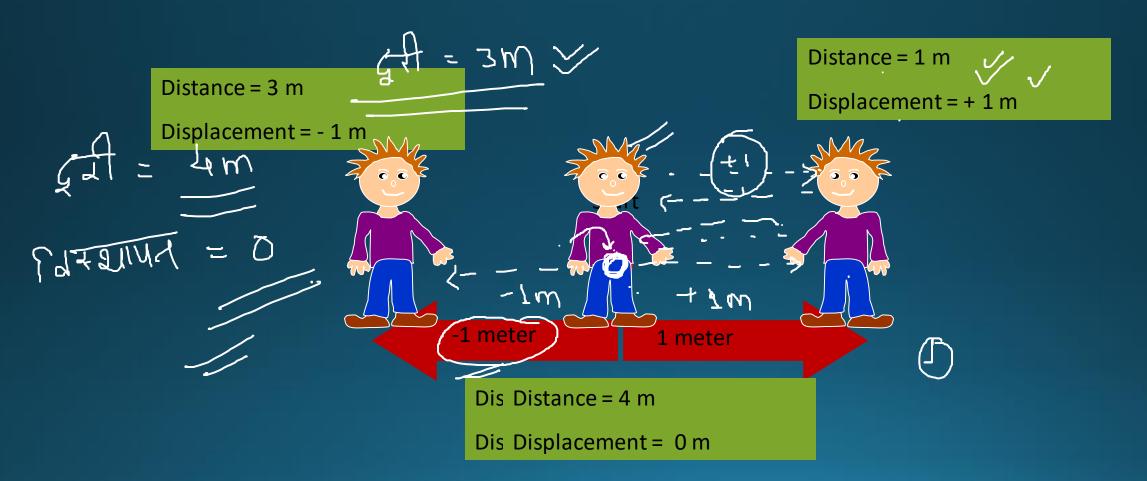
• Displacement (Δx) – where you are in relation to where you started


गतिकी परिभाषा

- गतिकी भौतिकी की एक शाखा; गति का अध्ययन
- स्थिति (x) जहां आप स्थित हैं
- दूरी (d) दिशा की परवाह किए बिना आपने कितनी दूर की यात्रा की है
- विस्थापन (Δx) जहां आप शुरू किए , संबंध में हैं

Distance vs. Displacement (द्री व शिवस्थापन)

- You drive the path, and your odometer goes up by 8 miles (your distance).
- Your displacement is the shorter <u>directed</u> distance हानारमक हाने हा। from start to stop (green arrow). Distance े (१४९) मिण्यू
- What if you drove in a circle?


Die Place menta (+ve) (-ve)

Let's Practice!

REMEMBER:

- "Distance" is how far you have gone. "दूरी आप कितनी दूर चले गए हैं।
- "Displacement" is how far you are from the starting point. "विस्थापन" आप शुरुआती बिंदु से कितनी दूर हैं

Speed vs. Velocity (-এনে এম ব্রা)

- Speed is a scalar (how fast something is moving regardless of its direction).

 Ex: v = 20 mph
- Speed is the magnitude of velocity.
- Velocity is a combination of speed and direction. Ex:
 v = 20 mph at 15° south of west
- The symbol for speed is v.
- The symbol for velocity is type written in bold: v or hand written with an arrow: v

Speed vs. Velocity

- During your 8 mi. trip, which took 15 min., your speedometer displays your instantaneous speed, which varies throughout the trip.
- Your average speed is 32 mi/hr.
- Your average velocity is 32 mi/hr in a SE direction.
- At any point in time, your velocity vector points tangent to your path.
- The faster you go, the longer your velocity vector.

More About Velocity

 Average Velocity: the overall displacement covered in a given time period

$$V_{avr} = \frac{Total Di stance}{Total Fine} = \frac{displacement}{time} = \frac{\Delta d}{t}$$

• Units = $m/_s = m \cdot s^{-1}$

*Note: average speed = total *distance* per unit time

- Instantaneous Velocity: The speed and direction of a moving object at a particular instant in time
 - Initial velocity $\rightarrow v_1$ (or v_i or v_o)
 - Final velocity $\rightarrow v_2$ (or v_f or v)

=) समान दूरी में विश्वापित 5,=52 66 KM/L , B DONR = [10 +60] = 3 x 11 x 6x for - 40 KM P

40 Km/h 60 Km/kg 44414 WIII H E1/

$$Q_{avs} = \frac{y_{11}y_{2}}{2} = \frac{60+y_{0}}{2} = \frac{50 \times y_{0}}{1}$$

(rd (o l) Acceleration

- Acceleration (Vector): <u>ANY</u> change in velocity
 - Speeding up (final velocity is a larger magnitude than the initial velocity)
 - Slowing down (final velocity is a smaller magnitude than the initial velocity)
 - Changing directions (the direction of the vector is changing)
- Average Acceleration: the rate at which velocity is changing

• Units =
$$\frac{\text{find vel} - \text{initial vel}}{t}$$

$$a = \frac{\Delta v}{t} = \frac{v_2 - v_1}{t}$$

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

=> [3 = 2 m/s2] > 1 cceleration

A l= Lomis t=15sec (l2=10m/s

= 2-21 = 10-40

= 52m/s2

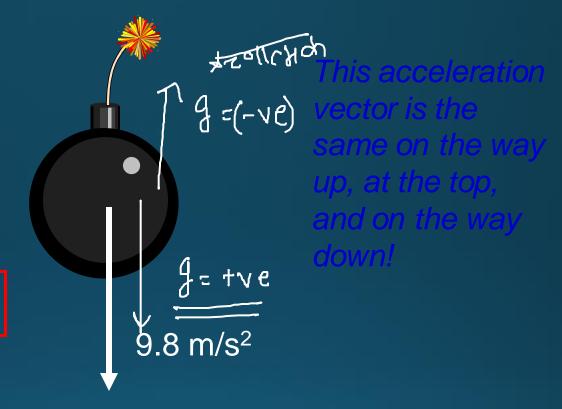
Regative Acceleration = Ratardation

Velocity & Acceleration Sign

	hart
\	Hall

7

	nart		
	VELOCITY		
A C		+	_
CELER	-	Moving forward; Speeding up	Moving backward; Slowing down
ATION		Moving forward; Slowing down	Moving backward; Speeding up



े । स्टोस ८ बर्हा

Acceleration due to Gravity

Near the surface of the Earth, all objects accelerate at the same rate (ignoring air resistance).

$$a = -g = -9.8 \text{ m/s}^2$$

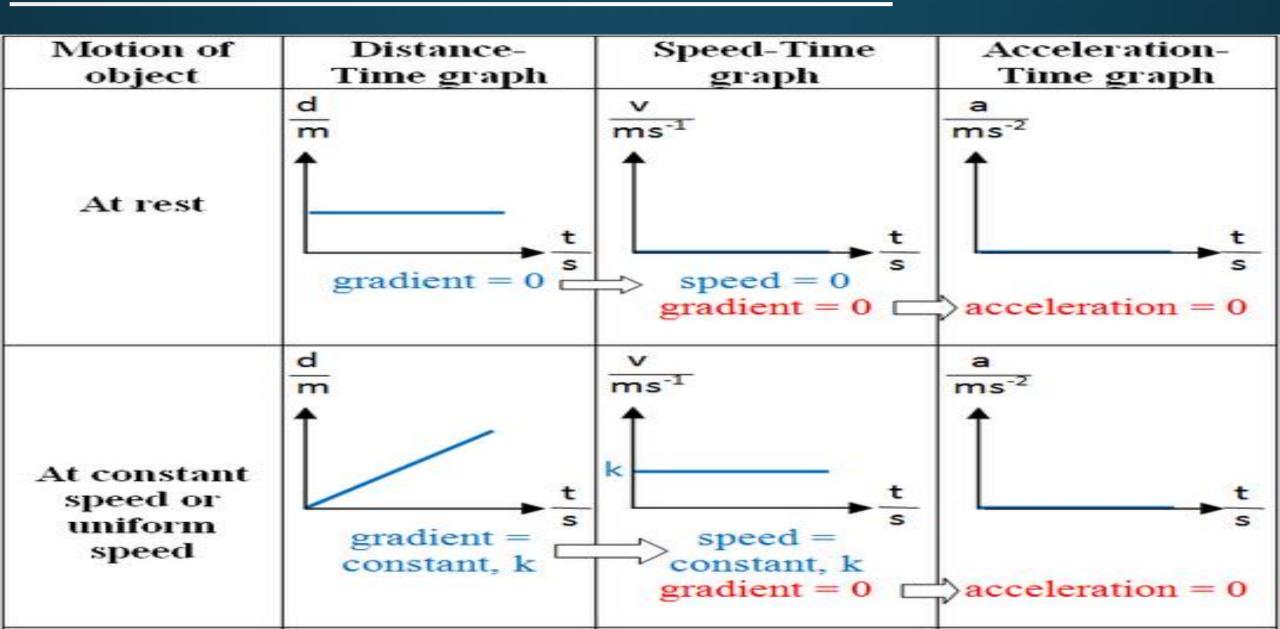
Interpretation: Velocity decreases by 9.8 m/s each second, meaning velocity is becoming less positive or more negative. Less positive means slowing down while going up. More negative means speeding up while going down.

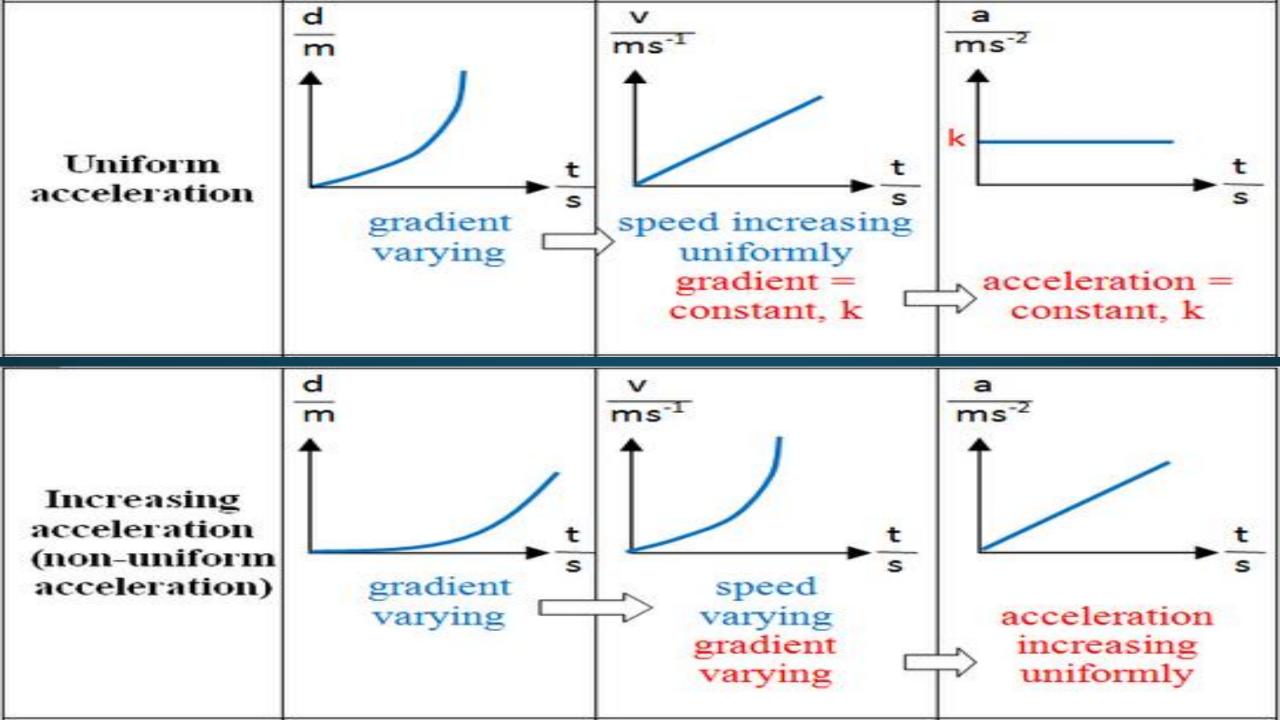
2)

Kinematics Formula Summary

m=60 kg

Linear eq.

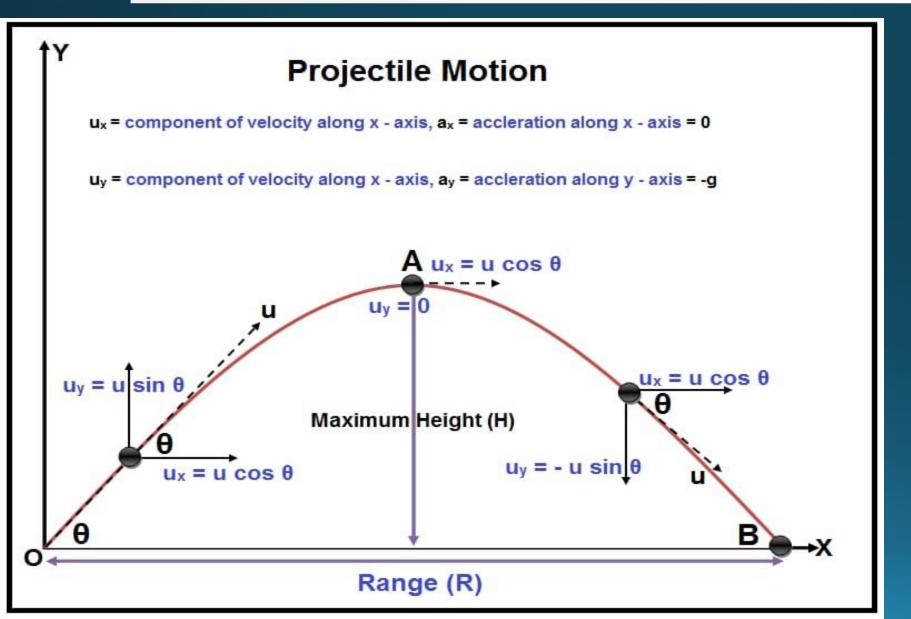

•
$$V_f = V_0 + at$$


•
$$\nabla = (v_0 + v_t)/2$$

$$\Delta \mathbf{x} = \mathbf{v}_0 t + \frac{1}{2} a t^2$$

•
$$v_f^2 - v_0^2 = 2 a \Delta x$$

KINEMATICS GRAPH




PROJECTILE MOTION

Motion in a Plane - Part I

Motion in a plane

Examples of motion in two dimensions.

Circular motion

Equations of motion in a straight line

$$v = u + at$$

$$s = ut + \frac{1}{2} at^{2}$$

$$v^{2} = u^{2} + 2as$$

v = final velocity of the particle

u = initial velocity of the particle

s = displacement of the particle

a = acceleration of the particle

t = the time interval in which the particle is in consideration

Projectile motion

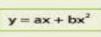
Equations of motion in a plane

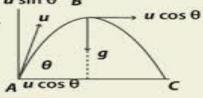
Apply equations of motion in a straight line separately in both directions, X and Y.

$$v_x = u_x + a_x t$$
 $v_y = u_y + a_y t$

$$v_y = u_y + a_y t$$

$$s_x = u_x t + \frac{1}{2} a_x t$$


$$s_x = u_x t + \!\! \frac{1}{2} \ a_x t^2 \qquad \qquad s_y = u_y t + \!\! \frac{1}{2} \ a_y t^2$$


$$v_x^2 = u_x^2 + 2a_y s$$
 $v_y^2 = u_y^2 + 2a_y s$

$$v^2_y = u^2_y + 2a_y$$

Projectile motion

- Projectile refers to an object that is in flight along the horizontal and vertical direction simultaneously.
- Acceleration acts only in the vertical direction due to acceleration due to gravity (g). u sin 0 B
- No acceleration in the horizontal direction.
- · Projectile motion is always in the form of parabola.

Formulas for projectile motion

Components of velocity at time t

Position at time t

Equation of path of projectile motion

Time of maximum height

Time of flight

Maximum height of projectile

Horizontal range of projectile

Maximum horizontal range ($\theta_0 = 45^\circ$)

 $u_x = u \cos\theta$ $u_v = u \sin\theta - gt$

 $x = (u \cos \theta)t$

 $y = (u \sin \theta)t - 1/2 gt^2$

 $y = (\tan \theta)x - gx^2/2(u \cos \theta)^2$

 $t_m = u \sin\theta / q$

 $2t_m = 2(u \sin\theta/g)$

 $h_m = (u \sin \theta)^2/2g$

 $R = u^2 \sin 2\theta/q$

 $R_m = u^2/g$

Don't Forget to Like / Comment & Share this video

www.Youtube.com/safaltaclass

www.Facebook.com/safaltaclass

www.Instagram.com/safaltaclass

