Statistics

By

Ankush Garg(B. Tech, IIT Jodhpur)

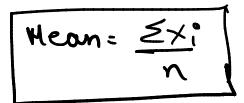
MEASURES OF CENTRAL TENDENCY

An average value or a central value of a distribution is the value of variable which is representative of the entire distribution, this representative value are called the measures of central tendency.

Mean Median Mode

(i) For ungrouped dist. : If $x_1, x_2, \dots x_n$ are <u>n</u> values of variate x_i then their A.M. \overline{x} is defined as

$$\begin{bmatrix} \overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \\ \Sigma x_i = n \overline{x} \end{bmatrix} = \underbrace{\frac{\sum_{i=1}^{n} x_i}{n}}_{i}$$



(ii) For ungrouped and grouped freq. dist. : If $x_1, x_2, \dots x_n$ are values of variate with corresponding frequencies $f_1, f_2, \dots f_n$ then their A.M. is given by

$$\overline{x} = \frac{f_1x_1 + f_2x_2 + \dots + f_nx_n}{f_1 + f_2 + \dots + f_n} = \frac{\sum_{i=1}^n f_ix_i}{N}, \text{ where } N = \sum_{i=1}^n f_i$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$164$$

$$1$$

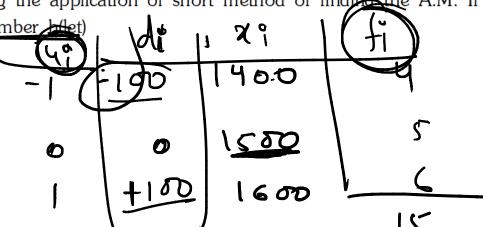
(iii by short method: If the value of x_i are large, then the calculation of A.M. by using previous formula is quite tedious and time consuming. In such case we take deviation of variate from an arbitrary point of $d_i = x_i - a$

 $\overline{x} = a + \frac{\Sigma f_i d_i}{N}, \text{ where a is assumed mean}$ 23 144 232 1932

By step deviation method: Sometime during the application of short method of finding the A.M. If each deviation degree divisible by a common number below.

Let .

$$\overline{x} = a + \left(\frac{\sum f_i u_i}{N}\right)$$



If for some $x \in R$, the frequency distribution of the marks obtained by 20 students in a test is

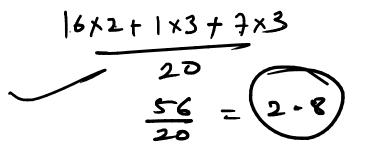
Marks	2	3	5	7
Frequency	$(x+1)^2$	2x-5	$x^2 - 3x$	x

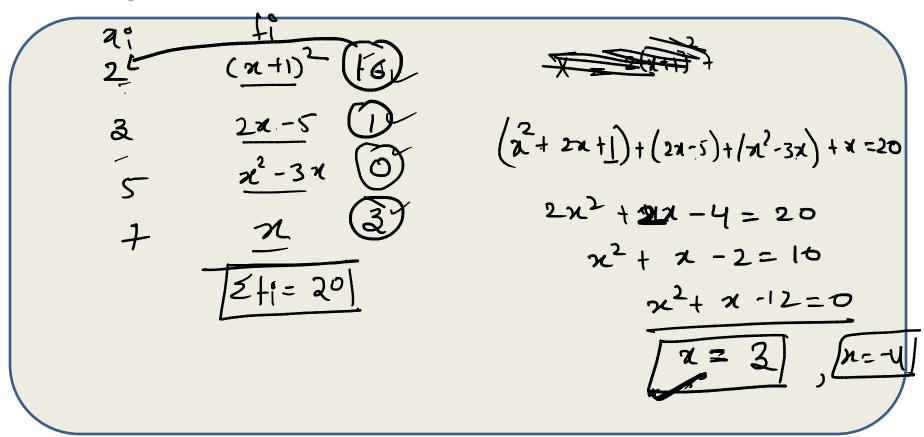
Then, the mean of the marks is

(2019 Main, 10 April I)

(c) 2.5

(d) 3.2





Properties

$$(D \cap A.M. \text{ of } (x_i + \lambda) = \overline{x} + \lambda$$

A.M. of
$$(\lambda x_i) = \lambda \overline{x}$$

If
$$\overline{x}$$
 is the mean of variate (x_i) then $(x_i) = \overline{x} + \lambda$

A.M. of $(x_i) = \overline{x} + \lambda$

A.M. of $(ax_i) = \lambda \overline{x}$

A.M. of $(ax_i) = a\overline{x} + b$

(where λ , a, b are constant)

$$\overline{X} = \frac{X_1 + X_2 + X_3 - Y_1}{N}$$

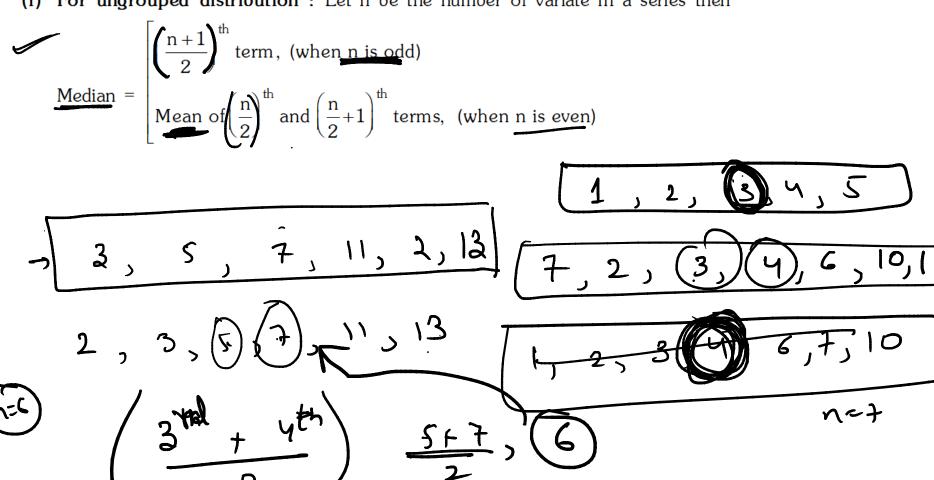
$$X = \frac{x_1 + x_2 + \dots + x_n + x_n}{x_1 + x_2 + x_2 + x_3} + A$$

MEDIAN:

The median of a series is the value of middle term of the series when the values are written in ascending order. Therefore median, divided an arranged series into two equal parts.

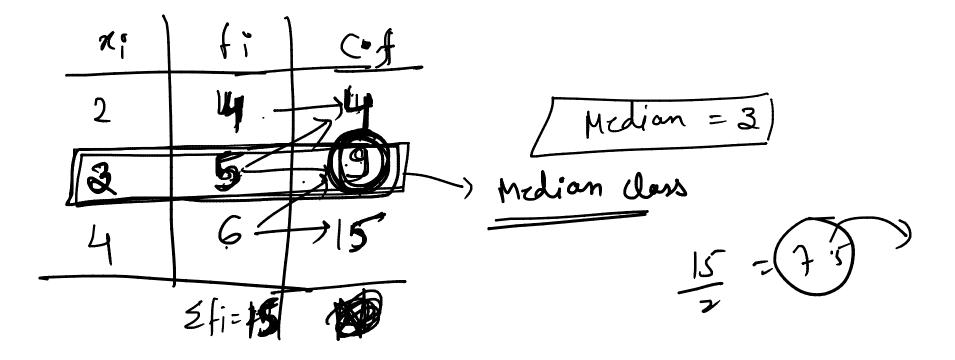
Formulae of median :

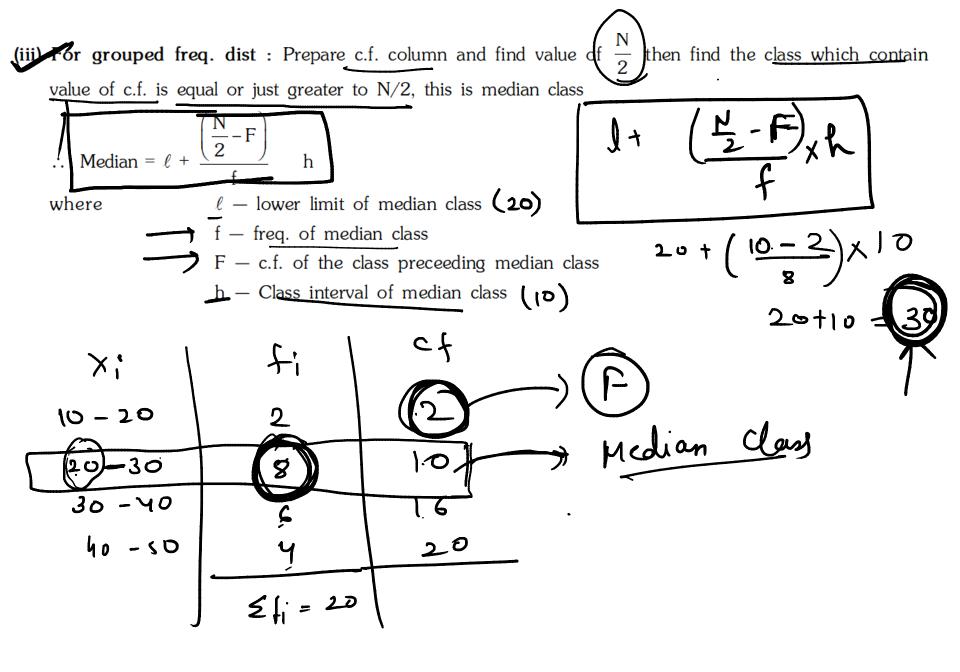
(i) For ungrouped distribution: Let n be the number of variate in a series then



For ungrouped freq. dist. : First we prepare the cumulative frequency (c.f.) column and Find value of

Median =
$$\begin{bmatrix} \left(\frac{N+1}{2}\right)^{th} & \text{term, (when N is odd)} \\ Mean & \text{of } \left(\frac{N}{2}\right)^{th} & \text{and } \left(\frac{N}{2}+1\right)^{th} & \text{terms, (when N is even)} \end{bmatrix}$$





The mean and the median of the following ten numbers in increasing order 10, 22, 26, 29, 34, x, 42,

 $\sqrt{0}$, y are 42 and 35 respectively, then $\frac{y}{}$ is equal to

(2019 Main, 9 April II)

(a)
$$\frac{7}{3}$$

- 126 42 7 36 12 2

$$\begin{cases} 42 = \frac{294 + 4}{10} \\ y = 126 \end{cases}$$

$$\frac{2}{35} = \frac{344}{2}$$

$$\chi = 36$$