
TAUTOLOGY AND CONTRADICTION:

- (i) Tautology: A statement is said to be a <u>tautology</u> if it is true for all logical possibilities i.e. its truth value always T. it is denoted by t.
- (iii) Contradiction: A statement is a contradiction if it is false for all logical possibilities. i.e. its truth value always F. It is denoted by c.

(fallary)

Distributive laws: (a)
$$p \land (q \lor r) \equiv (\underline{p \land q}) \lor (\underline{p \land r})$$

(b) $p \lor (q \land r) \equiv (\underline{p \lor q}) \land (\underline{p \lor r})$

De Morgan Laws : (a)
$$(p \land q) \equiv \tilde{p} \lor \tilde{q}$$

(b) $(p \lor q) \equiv p \land q$

$$\sim (PNQ) = \sim P \sim q$$
 $\sim (PVQ) = \sim P \sim q$

NEGATION OF COMPOUND STATEMENTS:

If p and q are two statements then

(i) Negation of conjunction :
$$(p \land q) \equiv p \lor q$$

(ii) Negation of disjunction :
$$(p \lor q) \equiv p \land q$$

(iii) Negation of conditional :
$$(p \rightarrow q) \equiv p \land q$$

(iv) Negation of biconditional : (p
$$\leftrightarrow$$
 q) = (p \land q) \lor (q \land p)

1 The boolean expression $\sim (p \Rightarrow (\sim q))$ is equivalent to (2019 Main, 12 April II)

$$(a) p \wedge q$$

(d)
$$(\sim p) \Rightarrow q$$

The negation of the boolean expression $\sim s \vee (\gamma \lambda s)$ is equivalent to (2019 Maip, 10 April II)

 $s \wedge r$

(c) s∨r

 $r \sim s \wedge \sim r$

(2 mm) V 2~

For any two statements p and q, the negation of the expression $p \lor (\sim p \land q)$ is (2019 Main, 9 April I)

$$\sim p \land \sim q$$

(d)
$$p \leftrightarrow q$$

If p and q are two statements then

- (i) (Contrapositive of $(p \rightarrow q)$ is $(\sim q \rightarrow \sim p)$
 - (ii) (Contradiction of $p \Rightarrow q$) is $(q \Rightarrow \sim p)$
 - +(iii) (Converse of $p \Rightarrow q$) is $(q \Rightarrow p)$

Write the contrapositive of the following statement: "If Mohan is poet, then he is poor"

The contrapositive of the statement "If you are born in India then you are a citizen of India", is

(2019 Main, 8 April I)

.. 0

- (c) If you are born in India, then you are not a citizen of India.
- (d) If you are not born in India, then you are not a citizen of India.

