

Mathematical Reasoning

By Ankush Garg(B. Tech, IIT Jodhpur)

STATEMENT :

A sentence which is <u>either true</u> or false but cannot be both are called a statement. A sentence which is an exclamatory or a wish or an imperative or an <u>interrogative</u> can not be a statement. If a statement is true then its <u>truth value is T</u> and if it is false then its truth value is F For ex.

(i) "New Delhi is the capital of India", a true statement

(iii) "3 + 2 = 6", a false statement

(iii) "Where are you going $\mathbf{?}$ " not a statement beasuse

it connot be defined as true or false

Note : A statement cannot be both true and false at a time

SIMPLE STATEMENT :

Any statement whose truth value does not depend on other statement are called simple statement For ex. (i) " $\sqrt{2}$ is an irrational number" (ii) (ii) "The set of real number is an infinite set") **T EOMPOUND STATEMENT** :

A statement which is a <u>combination of two or more simple statements</u> are called compound statement Here the simple statements which form a compound statement are known as its sub statements

For ex. compound statement "If x is divisible by 2 then x is even number" (i) " ΔABC is equilated if and only if its three sides are equal" (ii)

LOGICAL CONNECTIVES :

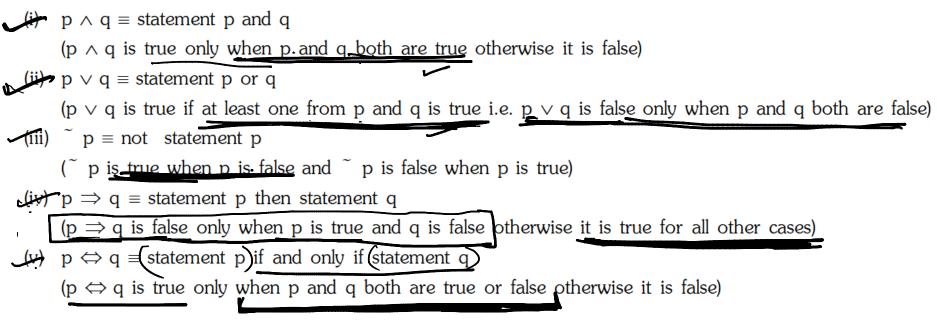
The words or phrases which combined simple statements to form a compound statement are called logical connectives.

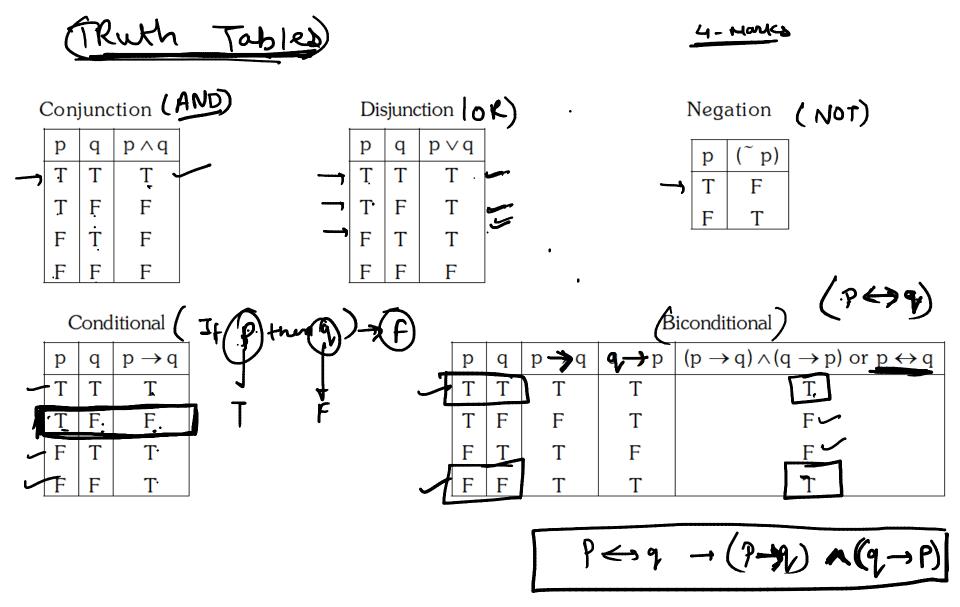
In the following table some possible connectives, their symbols and the nature of the compound statement formed by them P, q

S.N.	Connectives	symbol	use	operation	
1 .	and	^	p ∧ q	conjunction 🛩	
2.	or	X	$p \lor q$	disjunction 🛩	
3 .	not	🛿 or 🤊	⊔ p or p'	negation	
4.	If then	→or→	$p \Rightarrow q \text{ or } p \rightarrow q$	Implication or conditional	
5.	If and only if (iff)	⇔ or ↔	$p \Leftrightarrow q \text{ or } p \leftrightarrow q$	Equivalence or Bi-conditional	
		Double		Double Implication	

Implication

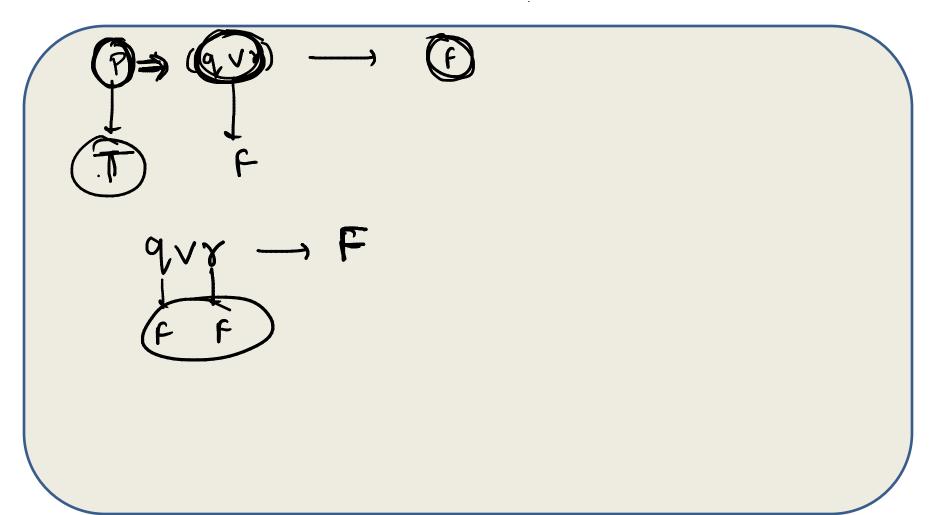
Explanation :





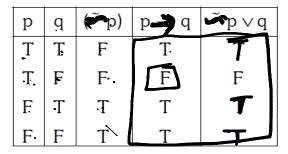
Venn	Diagram				
(P,q)		P 4		Regions	<u> </u>
		3			
		· · · · · · · · · · · · · · · · · · ·	Re	gien	
	AND (F	<u>(19)</u>	→ (2		
<u>~</u> ?	OR (PVq) -		23	
3	TON	(~P)		, 4	
		(ng)	,	<u>t 54</u>	
y and a start	Implicati	ion (P-)	₽) —.	> 2, 3,	
5	Double :	Implication	(P 关	₩q,) —	2,4

If $p \Rightarrow (q \lor r)$ is false, then the truth values of $\underline{p, q, r}$ are respectively(2019 Main, 9 April II)(a) T, T, F(b) T, F, F(c) F, F, F(d) F, T, T

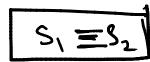


LOGICAL EQUIVALENCE

Two statements S_1 and S_2 are equivalent if they have identical truth table i.e. the entries in the last column of their truth table are same. If statements S_1 and S_2 are equivalent then we write $S_1 \equiv S_2$ For ex. The truth table for $(p \rightarrow q)$ and $(p \lor q)$ given as below



$$(n p \cdot v q)$$



We observe that last two columns of the above truth table are identical hence compound statements $(p \rightarrow q)$ and $(p \lor q)$ are equivalent

$$\underline{i.e.} \qquad p \to q \equiv p \lor q$$

