

(ix) Planes bisecting the angle between two planes

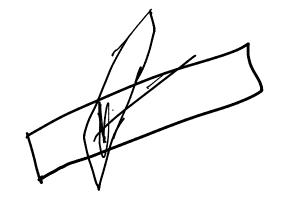
Planes disecting the angle between two planes

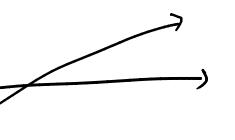
$$a_1x + b_1y + c_1z + d_1 = 0$$
 and $a_2 + b_2y + c_2z + d_2 = 0$ is given by

$$\left| \frac{a_1 x + b_1 y + c_1 z + d_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} \right| = \pm \left| \frac{a_2 x + b_2 y + c_2 z + d_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$

Of these two bisecting planes, one bisects the acute and the other obtuse angle between the given planes.

Equation of a plane through the intersection of two planes P_1 and P_2 is given by $P_1 + \lambda P_2 = 0$





8)

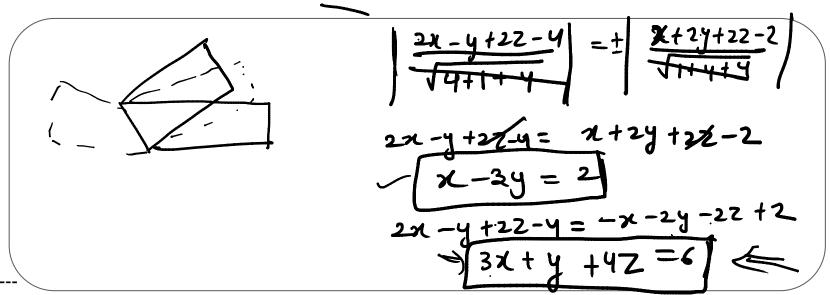
A plane which bisects the angle between the two given planes 2x - y + 2z - 4 = 0 and x + 2y + 2z - 2 = 0, passes through the point (2019 Main, 12 April II)

(a) (1, -4, 1)

(b) (1, 4, -1)

(c)(2,4,1)

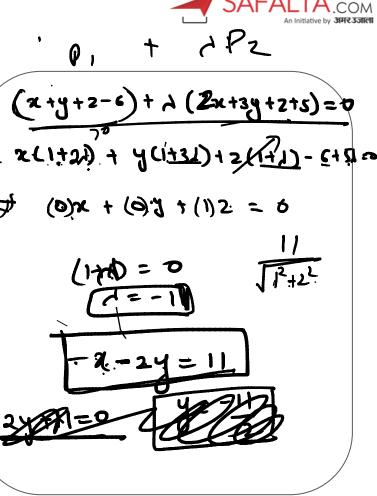
(d) (2, -4, 1)



Problems \

Let P be the plane, which contains the line of

intersection of the planes, x+y+z-6=0 and 2x+3y+z+5=0 and it is perpendicular to the XY-plane. Then, the distance of the point (0, 0, 256)from P is equal to (2019 Main, 9 April II) (a) $63\sqrt{5}$ (b) $205\sqrt{5}$



VECTOR EQUATION OF A LINE:

8=9+1B

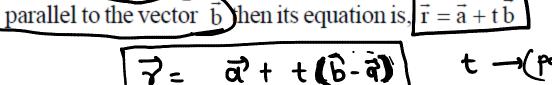
B (b)

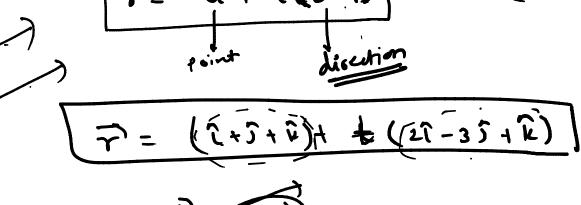
Parametric vector equation of a line passing through two point

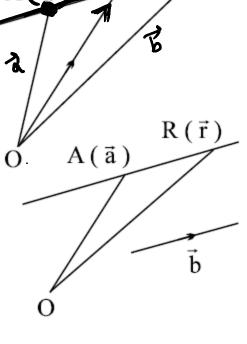
 $A(\vec{a}) \& B(\vec{b})$ is given by, $\vec{r} = \vec{a} + \underline{t(\vec{b} - \vec{a})}$ where t is a parameter. If the line passes through the point $A(\vec{a})$

 $R(\vec{r})$ $A(\vec{a})$

Figure







Cua =

Problems

(2162,3+34,-4-4A)

The distance of the point having position vector $-\hat{i} + 2\hat{j} + 6\hat{k}$ from the straight line passing through the point (2, 3, -4) and parallel to the vector, $6\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ is (2019 Main, 10 April II)

(a)
$$2\sqrt{13}$$

(a)
$$2\sqrt{13}$$
 (b) $4\sqrt{3}$ (c) 6

$$(3 = (2.2 + 33 - 42) + 4 (62+33 - 42)$$

للامتيان عن

12-417A1-11255

(n,mil

STRAIGHT LINE IN SPACE (cartesion form)

(120,120)

Equation of a line through $A(x_1, y_1, z_1)$ and having direction cosines l, m, n are

$$\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$$
and the lines through (y_1, y_1, z_1) and (y_1, y_1, z_1)

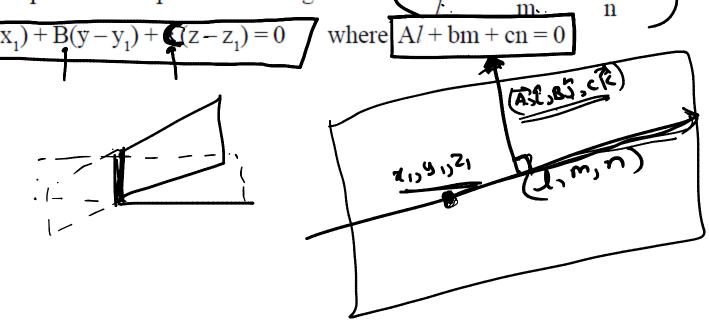
and the lines through (x_1, y_1, z_1) and (x_2, y_2, z_2)

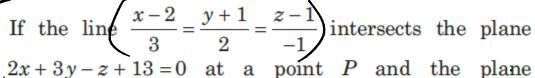
$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

(ii) Intersection of two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ together represent the unsymmetrical form of the straight line.

General equation of the plane containing the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is $A(x-x_1) + B(y-y_1) + C(z-z_1) = 0$ where Al + bm + cn = 0



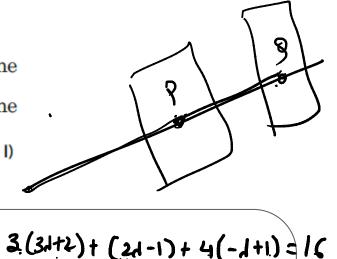


3x + y + 4z = 16 at a point Q, then PQ is equal to (2019 Main, 12 April I)

(b)
$$\sqrt{14}$$

(c)
$$2\sqrt{7}$$

(a) 14 (b)
$$\sqrt{14}$$
 (c) $2\sqrt{7}$ (d) $2\sqrt{14}$



The equation of the line passing through (-4, 3, 1), parallel to the plane x + 2y - z - 5 = 0 and intersecting the line (2019 Main, 9 Jan I)

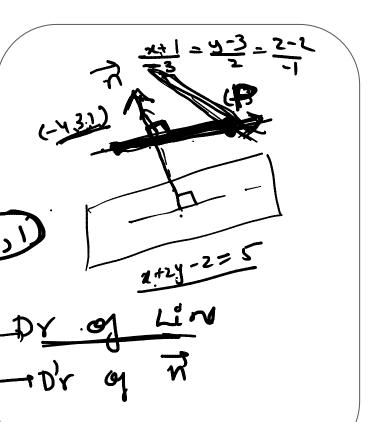
intersecting the line (2019 Main, 9 Jan I)
$$\left(\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z-2}{-1} \text{ is}\right) \longleftrightarrow \left(-\frac{3\lambda}{3} - \frac{\lambda}{3} + \frac{\lambda}{3} - \frac{\lambda}{3} + \frac{\lambda}{3}\right)$$

$$\frac{x+4}{3} = \frac{y-3}{-1} = \frac{z-1}{1}$$

(c)
$$\frac{x+4}{1} = \frac{y-3}{1} = \frac{z-1}{3}$$

(b)
$$\frac{x+4}{-1} = \frac{y-3}{1} = \frac{z-1}{1}$$

d)
$$\frac{x-4}{2} = \frac{y+3}{1} = \frac{z+1}{4}$$



If the line,
$$\left(\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+4}{3}\right)$$
 lies in the plane,

line,
$$\frac{3}{2} = \frac{3}{-1} = \frac{3}{3}$$
 lies in the plane,

$$lx + my - z = 9$$
, then $(l^2 + m^2)$ is equal to (2016 Main)

21-m-3=0

$$3l-2(2l-3)=5$$

- $l=-1$

End of Lecture