Problem Solving on Matrices

By Ankush Garg(B. Tech, IIT Jodhpur)

INVERSE OF A MATRIX

A square matrix A said to be invertible if and only if it is non-singular (i.e. $|A| \neq 0$) and there exists a matrix B such that, AB = I = BA.

B is called the inverse (reciprocal) of A and is denoted by $A^{\text{--}1}$. Thus

$$A^{-1} = B \Leftrightarrow AB = I = BA$$

$$A^{-1} = \frac{(adj A)}{|A|}$$

$$A \cdot (adj A) = |A| I_{n}$$

$$A^{-1} A (adj A) = A^{-1} |A| I_{n}$$

$$A^{-1} = \frac{(adj A)}{|A|}$$

$$A^{-1} = \frac{(adj A)}{|A|}$$

$$A^{-1} = \frac{(adj A)}{|A|}$$

$$A^{-1} = \frac{1}{|1|} \begin{bmatrix} -2 & -1 & 4\\ g & -4 & -5\\ -1 & 5 & 2 \end{bmatrix}$$

$$A^{-1} = \frac{-2}{|1|} = \frac{-2}{|1|} = -2(-2) + 3(-1)$$

PROPERTIES OF INVERSE:

$$(A) \longrightarrow \underline{A}^{\dagger}$$

Theorem-1: Every invertible matrix possesses a unique inverse.

Theorem-2: If A is an invertible square matrix, then A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$ $(A^T)^{-1} = (A^{-1})^T$

Theorem-3 : If A is a non-singular matrix, then prove that $|A^{-1}| = |A|^{-1} \quad \text{i.e.} \quad A^{-1}| = \frac{1}{|A|}$ **Theorem-4 :** If A & B are invertible matrices of the same order , then $(AB)^{-1} = B^{-1} \cdot A^{-1}$. $A^{-1}| = A^{-1} = A^{-1} \cdot A^{-1}$ $A^{-1}| = A^{-1} \cdot A^{-1}$

(1) If A is a symmetric matrix and B is a skew-symmetric
matrix such that
$$\underline{A} + B = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$$
 then AB is equal to
(2019 Main, 12 April I)
(a) $\begin{bmatrix} -4 & -2 \\ -1 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & -2 \\ -1 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} -4 & 2 \\ 1 & 4 \end{bmatrix}$
(c) $\begin{bmatrix} 4 & -2 \\ 1 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} -4 & 2 \\ 1 & 4 \end{bmatrix}$ (e) $\begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$ (f) $\begin{bmatrix} 0 & -2 \\ 2B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $\begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $\begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$
(f) $A + B = \begin{bmatrix} 2 & 3 \\ 3 & -1 \end{bmatrix}$ (g) $\begin{bmatrix} 0 & -2 \\ 2B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$
(f) $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$
(f)

Let
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$$
 such that
 $A^{32} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then, a value of α is 4^{NA}
(a) $\frac{\pi}{32}$ (b) 0 $(\alpha) - \frac{\pi}{64}$ (c) $\frac{\pi}{16}$ $(\alpha) - \frac{\pi}{2}$
 $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A^{32} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A^{32} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A^{32} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A^{32} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A^{32} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A^{32} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, (\alpha \in R)$ such that
 $A^{32} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha$

•

Let
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix}$$
 and $Q = [q_{ij}]$ be two 3×3 matrices
such that $Q - P^5 = I_3$. Then, $\frac{q_{21} + q_{31}}{q_{32}(2019 \text{ Main}, 12 \text{ Jan })}$ is equal to
 $q_{32}(2019 \text{ Main}, 12 \text{ Jan })$
 $(a \to 0 \ b) 135 \ (c) 9 \ (d) 15$
 $q = \mathbf{I}_{g} + P^{5_1}$ $P^{2_{-1}} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0$

Let
$$A = \begin{bmatrix} 0 & 2q & r \\ p & q & -r \\ p & -q & r \end{bmatrix}$$
. If $\underline{AA^T} = \underline{I_3}$, then $|p|$ is
(a) $\frac{1}{\sqrt{5}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{6}}$
(2019 Main, 11 Jan I)
(a) $\frac{1}{\sqrt{5}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{6}}$
(c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{6}}$

