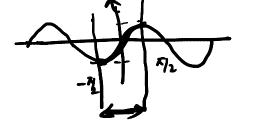
Inverse Trigonometric Functions

Ankush Garg (B.Tech, IIT Jodhpur)

Definition

 $\sin^{-1}x$, $\cos^{-1}x$, $\tan^{-1}x$ etc. denote angles or real numbers whose sine is x, whose cosine is x and whose tangent is x, provided that the answers given are numerically smallest available. These are also written as arc sinx, arc cosx etc.



¥

PRINCIPAL VALUES AND DOMAINS OF INVERSE CIRCULAR FUNCTIONS:

(i)
$$y = \sin^{-1} x$$
 where $-1 \le x \le 1$; $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ and $\sin y = x$.
(ii) $y = \cos^{-1} x$ where $-1 \le x \le 1$; $0 \le y \le \pi$ and $\cos y = x$.

$$y = \cos^{-1} x$$
 where $-1 \le x \le 1$; $0 \le y \le \pi$ and $\cos y = x$.
 $y = \tan^{-1} x$ where $x \in R$; $-\frac{\pi}{2} < x < \frac{\pi}{2}$ and $\tan y = x$.

(iv)
$$y = \underline{\operatorname{cosec}^{-1} x}$$
 where $\underline{x \le -1}$ or $\underline{x \ge 1}$; $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $\underline{y \ne 0}$ and $\operatorname{cosec} y = x$.

(v)
$$y = \sec^{-1} x$$
 where $x \le -1$ or $x \ge 1$; $0 \le y \le \pi$; $y \ne \frac{\pi}{2}$ and $\sec y = x$.

(vi)
$$y = \cot^{-1} x$$
 where $x \in R$, $0 < y < \pi$ and $\cot y = x$.

$$\begin{bmatrix}
 -\sqrt{3}, \sqrt{2} \\
 -\sqrt{3}, \sqrt{2}
 \end{bmatrix}
 - \{\sqrt{2}\}$$

- Note That: (a) 1st quadrant is common to all the inverse functions.
 - (b) 3rd quadrant is **not used** in inverse functions.
 - (c) 4th quadrant is used in the CLOCKWISE DIRECTION i.e. $-\frac{\pi}{2} \le y \le 0$

PRINCIPAL VALUES AND DOMAINS OF INVERSE CIRCULAR **FUNCTIONS:**

(ii) $y = \sin^{-1}x$ $-1 \le x \le 1$ $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ $-1 \le x \le 1$ $0 \le y \le \pi$ $-1 \le x \le 1$ $0 \le y \le \pi$ (iii) $y = \tan^{-1}x$ $x \in \mathbb{R}$ $-\frac{\pi}{2} < x < \frac{\pi}{2}$ $-\frac{\pi}{$			Range	Domain	Function	S.No.
(iii) $y = \tan^{-1} x$ $x \in \mathbb{R}$ $-\frac{\pi}{2} < x < \frac{\pi}{2}$ (σ, π) (iv) $y = \cot^{-1} x$ $x \in \mathbb{R}$ $0 < y < \pi$	•	心,心,	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$	$-1 \le x \le 1$	$y = \sin^{-1} x$	(ii)
(iv) $y = \cot^{-1} x$ $x \in \mathbb{R}$ $0 < y < \pi$			$0 \le y \le \pi$	$-1 \le x \le 1$	$y = \cos^{-1} x$	(it)
(iv) y cot x x x c x		_ (-N ₂ ,N ₂)	$-\frac{\pi}{2} < x < \frac{\pi}{2}$	$x \in \mathbb{R}$	$y = \tan^{-1} x$	(iii)
(v) $y = \csc^{-1} x$ $x \le -1 \text{ or } x \ge 1$ $-\frac{\pi}{2} \le y \le \frac{\pi}{2}, y \ne 0$		_	$0 < y < \pi$	$x \in R$	$y = \cot^{-1} x$	(iv)
	-{0}	[-7/2, 7/3]	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}, \ y \ne 0$	$x \le -1$ or $x \ge 1$	$y = cosec^{-1} x$	(v)
(vi) $y = \sec^{-1} x$ $x \le -1 \text{ or } x \ge 1$ $0 \le y \le \pi \ ; \ y \ne \frac{\pi}{2}$	{ K/2}	[0,7]-	$0 \le y \le \pi$; $y \ne \frac{\pi}{2}$	$x \le -1$ or $x \ge 1$	$y = sec^{-1} x$	(vi)

4th quadrant is used in the <u>clockwise direction</u> i.e. $-\frac{\pi}{2} \le y \le 0$

The value of
$$tan^{-1}(1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)$$
 is equal to (A) $\frac{\pi}{4}$ (B) $\frac{5\pi}{12}$

$$tan^{-1}(x) = 0$$

$$x = tano$$

(D)
$$\frac{13\pi}{12}$$

$$tan^{-1}\mathbf{1} = \mathbf{0}$$

$$1 = tano$$

$$0 = \sqrt{4}$$

$$(63^{-1}(-1)_{2}) = 6$$
 $-\frac{1}{2} = (636)$
 $(63(7-7)_{3}) = (636)$
 $\frac{2^{3}}{3} = 6$

$$\frac{136^{\circ}-36^{\circ}}{4}$$

Find the value of

(a)
$$\sin\left(2\sin^{-1}\frac{3}{5}\right)$$

(b)
$$\cos (2 \tan^{-1} 2) + \sin (2 \tan^{-1} 3)$$

If
$$\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$$
, then the value of $x^{2012} + y^{2012} + z^{2012} + \frac{6}{x^{2011} + y^{2011} + z^{2011}}$ is

equal to (A) 0

$$(C)-1$$

$$3 + \left(\frac{6}{-3}\right)$$

$$3 - 2 = 1$$

Properties

Sin(sin'z) = X

(x) $\tan(\tan^{-1}x) = x$, $x \in R$

 $\cos^{-1}(\cos x) = x \; ; \; 0 \le x \le \pi$

(i) $\sin(\sin^{-1}x) = x$, $-1 \le x \le 1$

(ii) $\cos(\cos^{-1}x) = x$, $-1 \le x \le 1$

(vi) $\tan^{-1}(\tan x) = x \; ; \; -\frac{\pi}{2} < x < \frac{\pi}{2}$

(iv) $\sin^{-1}(\sin x) = x$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Sin" (Sin(7-7/1)

9)

$$\cos\left(\cos^{-1}\cos\left(\frac{8\pi}{7}\right) + \tan^{-1}\tan\left(\frac{8\pi}{7}\right)\right)$$
 has the value equal to -

(A) 1 (C) $\cos\frac{\pi}{7}$

(D) 0

$$(65) (65) (27 - 67) + \tan^{-1} \tan (7 + 1)$$

$$(65) (65) (67) + \tan^{-1} \tan (7/4)$$

$$(65) (67) + 7 = (69) 7$$

$$(65) (67) + 7 = (69) 7$$

$$(67) (67) + 7 = (69) 7$$

Sin-Isin(x) Sinsin-10 Problems
-125 x Ex/2 -1251 0515 The 9) If $x = \sin^{-1}(\sin 10)$ and $y = \cos^{-1}(\cos 10)$, then y - x is equal to (2019 Main, 9 Jan II) (a) 0 (b) 10 (c) 7π OLLT x = Sin-1 Sin(10) y = (0) (0) = ws (4x-10)