

Instantaneous Rate And Average Rate Of A Reaction

For a general reaction

$$aA + bB \rightarrow cC + dD$$

Note that rate of reaction decreases gradually with the progress of reaction

: instantaneous reaction rate $=\frac{-1}{a}\frac{d[A]}{dt}$, at any time t

Over a finite time interval Δt concentration change is given by average reaction rate

$$\frac{-1}{a} \frac{\Delta[A]}{\Delta t}$$

Simple And Complex Reaction

Simple reactions:

elementory G mechanism + Reaction which occur in a single step

Example:
$$H_2 + I_2 \rightarrow 2HI$$

Order \rightarrow Experimental

 $r = k_1[H_2][I_2]$

O, tre, -ve, fractional

Complex reactions:

mechanismy

Reaction which take place in two or more steps

Example :
$$H_2 + Br_2 \rightarrow 2HBr$$

$$r = k_2[H_2][Br_2]^{\frac{1}{2}}$$

Note that for determination of rate of complex reactions mechanism should be known and then the rate of slowest step is the rate of overall reaction

Rate Constant (k) Of A Reaction

For a general reaction $aA + bB \rightarrow cC + dD$

$$r = k[A]^m[B]^n$$

k is defined as rate of reaction when concentration of each reactant is unity

Note that value of k is for a specific reaction represented by a balanced equation

TOR 8x(A)a(B)b

k is known as rate constant

I Series of

$$r = k[A]^m[B]^n$$

The exponents m and n are known as order of reaction with respect to A and B respectively

AND

(m+n) gives overall order of reaction

Note that m or n may and may not be equal to stoichiometric coefficients a and b

Concept Of Molecularity

has the minimum number of reacting particles that come together or collide in a rate determining step to form products

Unimobular /
Bimolocular /
Termolocular / It has meaning only for simple readfolds

Note that

- it is a theoretical concept
- it can not be zero , negative , fractional , infinite or imaginary
- it can not be greater than 3 since it is difficult for more than 3 molecules to collide
- it is invariant (i.e. independent of pressure, temperature etc.) for a chemical equation

Concept Of Order Of A Reaction

raised to determine rate of a reaction 4+8++ 9 -> 2+20+284

Example for reaction
$$aA + bB$$
 $r = k[A]^m[B]^n$ Order= $m + 3n$ (HBr + Hobbs \rightarrow H20+Br₂) λ

Note that order is an experimentally determined quantity.

It can be zero , negative , fractional or greater than 3 (but not infinite)

1 = K[HBr] (400Br)

Note that for simple reaction, order = molecularity

Concept Of Order Of A Reaction

Mathematically: order = sum of powers to which concentration terms are raised to determine rate of a reaction

Example for reaction
$$aA + bB \rightarrow cC + dD$$
 Zero (moles) (Lihe) time
$$r = k[A]^m[B]^n \longrightarrow \text{Order} = m + n$$

$$2rd \qquad \text{Lihe Sec-1}$$

$$2rd \qquad \text{Lihe Mol-1 sec-1}$$

$$3rd \qquad \text{Lihe Mol-2 sec-1}$$

Note that order is an experimentally determined quantity.

It can be zero, negative, fractional or greater than 3 (but not infinite)

Note that for simple reaction, order = molecularity

Law Of Mass Action

This law relates rate of reaction with active mass number of moles of the substance active mass = volume in litres (active mass = Molarity) dilyli soluton At a given temperature: rate of reaction (r) is proportional to the product of active masses of the reactant at that instant and raised to their stoichiometric equation for (one entated solution 9 of 22

Law Of Mass Action

This law relates rate of reaction with active mass

Law Of Mass Action

At a given temperature:

rate of reaction (r) is proportional to the product of active masses of the reactant at that instant and raised to their stoichiometric equation

First Order Reaction

 $A \longrightarrow Product$

Initial concentration

a

Concentration at time t (a - x)

х

$$\frac{-d[a-x]}{dt} = k_1[a-x]$$

$$k_1 = \frac{2.303}{t} \log\left(\frac{a}{a-x}\right)$$

$$k_1 = \frac{2.303}{t} \log \left(\frac{[A]_0}{[A]_t} \right)$$

Note that unit of k_1 is per time

Note that for 1st order reaction time required to complete any definite fraction (say $\frac{1}{n}$) of the reaction is independent of a initial concentration

$$t_{\frac{1}{n}} = \frac{2.303}{k_1} \log \left(\frac{1}{1 - \frac{1}{n}} \right)$$

Zero Order Reaction

 $A \longrightarrow Product$

Initial concentration

a

0

Concentration at time t (a - x)

X

$$\frac{-d[A]}{dt} = k_0 [A]^0$$

3)
$$2NH_3 \xrightarrow{M_0} N_2 \stackrel{or}{=} 3H_2 \frac{-d[a-x]}{dt} = k_0[a-x]^0$$

$$\implies \frac{dx}{dt} = k_0$$

$$\Rightarrow x = k_0 t$$

dx

dt

i.e.
$$k_0 t = a - (a - x) = [A]_0 - [A]_t$$

Note that rate constant is equal to the rate of reaction at all concentration

(a-x)

Zero Order Reaction

 $A \longrightarrow \mathsf{Product}$

Initial concentration

a

0

Concentration at time t (a - x)

X

$$k = \frac{\pi}{L} - \frac{a \cdot (a \cdot z)}{\int_{L}^{L} \frac{-d[A]}{dt} = k_0 [A]^0}$$

$$or \qquad \frac{-d[a-x]}{dt} = k_0[a-x]^0$$

$$\implies \frac{dx}{dt} = k_0$$

$$x = k_0 t$$

i.e. $k_0 t = \mathbf{a} - (\mathbf{a} - \mathbf{x}) = [A]_0 - [A]_t$

Note that rate constant is equal to the rate of reaction at all concentration

K=6-11- 6

Half Life Period: $t_{\frac{1}{2}}$

It is the time required for half the reaction to change

Order of reaction	Expression for rate constant	$t_{rac{1}{2}}$	K = 6
Zero	$k_0 = \frac{x}{t}$	$\frac{a}{2k_0}$	directly proportional to 'a'
One	$k_1 = \frac{2.303}{t} \log \left(\frac{a}{a - x} \right)$	$\frac{0.693}{k_1}$	independent of 'a'
Two	$k_2 = \frac{1}{t} \frac{x}{a(a-x)}$	$\frac{1}{ak_2}$	→ inversely related to 'a'
$n(for n \geq 2)$		$\underbrace{\frac{2^{n-1}-1}{k_2(n-1)a^{n-1}}}$	\Rightarrow inversely related to ' a^{n-1} '
$t_{\frac{1}{2}}$ Ze	ro order	$\frac{t_{\frac{1}{2}}}{\frac{1}{2}}$	Second order

Third Order Reaction Of Simplest Type

A → Product

Initial concentration a

Concentration at time t (a - x)

x

0

$$\frac{-d[a-x]}{dt} = k_3[a-x]^3$$

$$k_3 = \frac{1}{2t} \left\{ \frac{x(2a-x)}{a^2(a-x)^2} \right\}$$

Unit of k₃ is concentration⁻²time⁻¹

$$\frac{(\pm i2)_{I}}{(\pm i2)_{I}} = \left(\frac{6\pi}{6\nu}\right)^{n-1}$$

Arrhenius Equation

