

NEET- 2020- 45 Days Crash Course

Date : 11th August 2020

Chapter Name : Photosynthesis in PLANTS

Lecture Outline : C3 cycle C4 cycle , CAM cycle , photorespiration Compensation Point

CHEMIOSMOTIC THEORY-I

Chemiosmotic theory

- Proposed by Peter Mitchell
- On the other hand during non cyclic photophoshorylation there are three causes of difference in H⁺ ion concentration.
- This differential H⁺ ion concentration leads to development of proton gradient and electrical potential across thylakoid memberane.
- PMF do not allow stay of H⁺ ions in lumen so H⁺ start to move towards stroma through CF_0 particle selectively. $F_0 - F_1$ particle
- The passage of 3H⁺ ions leads to activation of <u>ATP synthase</u> and it forms ATP from ADP and Pi.

Some physiologist believe that synthesis of one ATP is required passage of 2H⁺ ions.

HEMIOSMOTIC HYPOTHESIS

ele-accep 214 + Transporter 244 · 0` PSI CUr PS,T 20 241 NADP reductos NADPH 24+ Fo H2OSpherry Complex Facilated Diffusion ADPI A Tpase) ATP 2H+

DARK REACTION and Warburg effect

Warburg effect

(B) Dark Reaction/Blackman Reaction/Calvin cycle/C₃–Cycle/Biochemical phase/ Carbon assimilation/photosynthetic carbon reduction cycle (PCR-Cycle)/Reductive pentose phosphates pathway

- Blackman reaction is called as dark reaction, because no direct light is required for this.
- Ist stable compound of Calvin cycle is 3C PGA (Phosphoglyceric acid) thus Calvin cycle is called as C₃-cycle. (First compound is unstable, 6C keto acid)
- Rubisco (Ribulose bis-phosphate carboxylase-oxygenase)
- Is main enzyme in C₃-cycle, which is present in stroma & it makes 16% protein of chloroplast. Rubisco is most abundant enzyme.
- CO_2 -acceptor in Calvin cycle is <u>RuBp</u>. This carboxylation reaction is catalysed by rubisco.
- ✤ C₃, C₄, C₅, C₆ and C₇ monosaccharides are intermediates of calvin Cycle
 - Inhibitory effect of high conc. of O₂ on photosynthesis is called as Warburg effect (It is due to Photorespiration).
 - ✤ 6 turns of Calvin cycle are required for the formation of one glucose.

STEPS OF CALVIN CYCLE – I

Carboxylation

Glycolytic reversal

5 Molecules of PGAL isomerise in to DHAP (Dihydroxy acetone phosphate).

STEPS OF CALVIN CYCLE – II

Regeneration of ribulose 1,5 biphosphate

2, fructose.P + 2, PGAL Transketolas	$\stackrel{e}{\longrightarrow}$ 2 Mol, Erythrose.P + 2 Mol. Xylulose.P	
(12C) (6C)	(8C) (10C)	
2, Erythrose.P + 2, DHAP	$\xrightarrow{\text{Aldolase}}$ 2, Sedoheptulose-1,7-BiP	
(8C) (6C)	(14C)	
2, Sedoheptulose–P + 2 PGAL P	$\xrightarrow{\text{Trans Ketolase}} 2, \text{ Xylulose-P + 2, Ribose-}$	
(14C) (6C)	(10C) (10C)	
2 + 2, Xylulose–P $\xrightarrow{\text{Epimerase}}$	4, Ribulose–5P (20C)	
2, Ribose–5P $\xrightarrow{\text{Isomers}}$	2 Ribulose–5P (10C)	
6, Ribulose–5P + 6ATP $\xrightarrow{\text{Kinase}}$ 6, Ribulose-1, 5-BiP (CO2 acceptor) + 6		
ADP		

STEPS OF CALVIN CYCLE – III

- (arbonylation C3 - CYCLE18ATP Reduction 9A7P 5 Ine fimps 12NADPY2 Regeneration (302)6NADDH25 (30)(3 - PGA)3 RUBP Rubisco 6 Phosphoglycerate (180,9 630 3 ANP (150) 680 CARI X14 A 7/1 3 ATP / 6A TP 3 Ribulose 5 phis hate (15C), (3Pi) s (ADP 5 mel PGALD (15() 5 Pi G 1,3-Diphos hogy (18c) certate Ealminique 6°P, GALD ADPH2 GU = PGA W GN ADP ED (3 ()

HATCH AND SLACK PATHWAY

 CO_2 concentrating mechanism/Co-operative photosynthesis/Dicarboxylic acid cycle (DCA cycle) /C₄ cycle/Hatch & Slack Pathway

- Kortschak and Hartt first observed that 4C, OAA (Oxaloacetic Acid) is formed during dark reaction in sugarcane leaves
- Hatch & Slack (Australia) (1967). Studied in detail and proposed pathway for dark reactions in sugarcane & maize leaves
- First stable product of this reaction is OAA. Which is 4C, DCA (Dicarboxylic Acid)
- ◆ Dicots with C₄-cycle are Euphorbia sps., Amaranthus, Chenopodium,
 Boerhavia, Atriplex rosea, Portulaca, Tribulus
- Wheat and barley (monocot) are C3 species. rice sp. devlopes as C₄ plants by plant breeding scientists

KRANZ ANATOMY

(i) Green bundle sheath cells (BS cells) present around the vascular bundles.

(ii) Dimorphic chloroplasts present in leaf cells. Chloroplast of B.S. cells or Kranz cells are larger and without grana. Mesophyll chloroplast are small and with grana.

C4 CYCLE - I

- Rubisco present in BS cells, while PEPCase in mesophyli cells
 NG e more
- ♦ C₄-Plant, C₃-cycle occurs in bundle sheath cells, while C₄-cycle occurs in mesophylls.
- Operation of Hatch and Slack pathway require cooperation of both photosynthetic cell i.e. mesophyll cells and BS cells.
- Photosynthetically C_4 plants are more efficient as there is no warburg effect or photorespiration, Because at the site of Rubisco (BS cells) no O_2 is release & (mesophyll cells pumps more CO_2 for C_3 cycle).
- ✤ C₄-plants found in tropical habitats and adapted themselves,
- If concentration of O₂ increases artificially, then photorespiration may be started in C₄ plants.
- First carboxylation in C₄-cycle occurs by PEP Case in mesophyll cytoplsam, carboxylation or final CO₂ fixation by C₃ cycle occurs in bundle sheath cells.

C4 CYCLE- II

- Primary CO₂ acceptor in C₄ mesophyll is PEP (Phosphoenol Pyruvate).
 (3C–compound), while RuBp in bundle sheath cells.
- 12 NADPH₂ & 30 ATP needed for production of 1 Hexose (Glucose) in

SPECIAL FEATURES of C₄ PLANTS

- \mathbf{O}_{4} plants are more efficient plants at present CO₂ concentration.
- Present level of atmospheric CO_2 is generally not limiting factor for C_4 plants.
- C_4 plants posses low CO_2 compensation points. (8-10 ppm)
- \clubsuit The productivity (fertility) in C₄ plants, does not increase when CO₂ concentration is increases, because :
- Mesophyll cells pump more CO_2 for Calvin cycle.

Mesophyll cells pump more CO_2 for Calvin cycle. ($CO_2 = CO_2 = CO$ * little or no chance of photorespiration.

C4 cycle

Charaden C3 plant (4 plan-RVBP W2 accep PEP-MS RUBP-BS 1st st endle comp PGA OAA Type 3 cheoroplast Grand in M.S Grand - MS Agran - BS Cycle (I-inn) only 13 C4-MS (3- B.S Site Z Czcycle Mesophyri Bundlisheat aptimum Temp 10-20°C 30°C 30AJP Lo 12-(4 Rubisco & Jepco Prod 3 ATP 18ATP En tymes Rubisco

CAM-PLANTS - I

CAM–Plants / Crassulacean acid metabolism / Dark CO2 fixation / Dark Acidification

- Oleary and Rouhani discovered CAM–process in members of Crassulaceae family. Succulent xerophytie plants
- Eg. are .- Kalanchoe, Bryophyllum, Sedum, Kleinia, Opuntia, Crassula, Agave, Aloe, Euphorbiasps, Pineapple, Welwitschia (Gymnosperm) etc.
- Primary acceptor of CO₂ is PEP (Phosphoenol pyruvate) and oxaloacetic acid is the first product of carboxylation reaction.
 Standa Open in Mo night
 In CAM plants stomata are of scotoactive type, so initial CO₂ fixation is found in night but light reactions operates at day time. Final CO₂ fixation (C₃ cycle) occurs

in day time. PEPcase induces carboxylation reaction in night.

PEP carboxylase & Rubisco present in mesophyll cells. (No Kranz-anatomy)

♦ In CAM plants 30 ATP and 12 NADPH₂ are required as assimilatory power for 1 glucose synthesis. 12A1C

CAM–Plants – II

CAM plants exhibits ecophysiological adaptation with xeric habits.

Succulent × erophytes

NIGHT OPEN PTUADPHZ PEP CO2 Certhonylase L ght (3)RKⁿ RUBD PEP OAA(40) 12 30 NADPH2 » NADOU NADP Malie Arid NAPPE \mathcal{M} , \mathcal{V} MA MΛ 14(1)

PHOTORESPIRATION-I

Photosynthetic carbon oxidation cycle/C₂ Cycle/Photorespiration/Glycolate–Metabolism

- Term was given by 'Krotkov'
- First of all Krotkov et. al indicated that more CO_2 evolves during day time in C_3 plants.
- Decker & Tio discovered photorespiration and clarified that C₂-cycle or glycolate pathway operates during day time in C₃-plants & Rubisco acts as oxygenase at higher concentration of O₂ and low CO₂ concentration in the C₃ – green cells.
- > The light dependent uptake of O_2 & release of CO_2 in C_3 photosynthetic cell is called photo-respiration.

, and

- Photorespiration is not linked with ATP generation (in place ATP are consumed) as ordinary dark respiration, thus it is harmful or wasteful process linked with C₃ cycle C P M
- > It occurs in chloroplast, peroxisomes & mitochondria (three cell organalle reaction).

- > During photorespiration, 75 percent of the carbon lost by the oxygenation of RUBP is recovered. Because two molecules of glycine (2C + 2C = 4C) form one molecule of serine (3C). during this one carbon releases in form of CO_2 in mitochondria thus 25 percent carbon is lost.
- > This serine molecule changes into PGA via different reactions of C_2 cycle.

> H₂O₂ (Peroxisome) and NH₃ (Mitochondria) produced in photorespiration.

Glycine (Peroxisome) and serine (mitochondria) are also formed in photorespiration.

PHOTORESPIRATION – III

It is assumed that in C₃ plants, if photorespiration does not occur, then increases O₂ conc. which may oxidise (Photooxidation or Solarization) the different protoplasmic parts of photosynthetic cell at high light intensity.

FACTORS AFFECTING PHOTOSYNTHESIS – Temperature and CO₂

2. Temperature

- ✤ Optimum temp. for photosynthesis is 20–35°C
- At high temp. rate of photosynthesis decreases due to denaturation of enzymes.

J P.S

7 Temp

- Conifers & lichens can perform photosynthesis at <u>-35°C</u>, while thermal algae Oscillatoria at 70–80°C.
- Generally different habitat plants show, different response to photosynthesis.
 Of very 4 Temp, Standa Close

3. CO₂ (0.03%/314 ppm)

- An increase in CO_2 conc. upto 1% rate of photosynthesis is increased. Higher CO_2 concentration. is toxic to plant & also closes stomata $SUght \uparrow U_2$
- C_4 -Plants can photosynthesize at low CO_2 concn (upto 10 ppm). CO_2 fixation in photosynthesis is equal to volume of CO_2 released. CO_2 compensation point", when plant saturated with full light.

FACTORS AFFECTING PHOTOSYNTHESIS –CO₂ O₂ and Water

Factors Affecting Photosynthesis –Chlorophyll, Product, Leaf and Inhibitors

6. Chlorophyll

✤ The amount of CO₂ in grams absorbed by 1 gm. of chlorophyll in 1 hour is called as photosynthetic number or assimilatory number (Willstatter & Stoll).

7. Product

is anicant of co2 fined, gm of ch1/hr Rate of photosynthesis decreases, when sugar accumulates in mesoph

LAR THE JPSL

8. Leaf

Various leaf factors like leaf age and leaf orientation effect the rate of ** photosynthesis. In young & mature leaves photosynthesis is more than old (senescent) leaves. no 3 chlonplast 7 - p. St no 3 standi i ponti -

9. Inhibitors

DCMU (Diuron/Dichlorophenyl Dimethyl Urea)CMU (Monuron), PAN, Atrazine, Simazime, Bromocil, Isocil– inhibit the photosynthesis by blocking PS-II. They stop e- flow between P-680 & PQ.

Factors Affecting Photosynthesis- Minerals, Law of limiting factors

10. Minerals

Mg and Nitrogen are essential for structure of chlorophyll and enzymes. Thus reduction in N₂ and Mg supply to plants effects adversely the rate of photosynthesis.

Law of limiting factors – (Blackman)

- It is the modification of Law of minimum by Liebig. "When a process is conditioned to its rapidity by a number of factors, then rate of process is limited by the pace of the slowest factor" (CO₂, light, chlorophyll, water, temp.)
- ✤ CO₂ becoming limiting in clear sky, but light limiting in cloudy days.
- Atmospheric CO_2 is not limiting factor for C_4 plants & submerged hydrophytes.

BACTERIAL PHOTOSYNTHESIS – I

- Certain bacteria are capable for photosynthesis Eg :- Chlorobium (Green Sulphur), Chromatium (Purple Sulphur), Rhodospirillum, Rhodopseudomonas (Purple non sulphur).
- Cyclic photophosphorylation is an important method in bacterial photosynthesis.
- Absorption of Infra red spectrum takes place during bacterial photosynthesis thus no red drop.
- ✤ Pigment system of bacteria denoted by B–890 or 870
- Evolution of O₂ is not related to bacterial photosynthesis, because water is not e– donor and PS II is absent.
- Only one ATP is produced in each turn of cyclic photophosphorylation, in bacteria.
- Olson 1970 gave a non cyclic scheme in bacterial photosynthesis.

$$\begin{array}{c} \mathbb{R} \text{ light} \\ 6\text{CO}_2 + 12 \text{ H}_2\text{S} & \xrightarrow{} \text{Pigments in chromotophores} \end{array} \xrightarrow{} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{H}_2\text{O} + 12\text{S}. \end{array}$$

Bacteria has only one pigment system, PS I.

Difference Between Photorespiration And Respiration

Photorespiration	Dark respiration
1. Occurs in the chloroplast, peroxisome and mitochondria.	 Occurs in cytoplasm, mitochondria.
2. Wasteful process.	2. Useful process.
3. $NH_3 \& CO_2$, H_2O_2 are produced	3. CO ₂ , H ₂ O & ATP generated.
4. In green cells of C_3 . Plants.	4. In all living cells.
5. Occurs during day time only.	5. All time.

Photophosphorylation – Comparison

Cyclic photophosphorylation	Non – cyclic photosphorylation
1. Only PS.I involved in cyclic process.	1. Both PS.II & PS.I works in non. Cyclic process.
2. The e^{\dagger} expelled from chl. 700 is cycled back.	2. The e^{\mid} expelled from reaction center is not cycled back. Its loss is compensated by e^{\mid} from H_2O .
3. Phosphorylation of two place.	3. Phosphorylation at one site.
4. Photolysis of water and evolution of O_2 does not take place.	4. Photolysis of water and evolution of O_2 takes place.
5. <i>NADP</i> ⁺ is not reduced.	5. <i>NADP</i> ⁺ is reduced to NADPH.
6. Activated by 680 NM [↑] light.	6. Activated by 680 NM \downarrow

C₃, C₄ & CAM Pathway Comparision -I

C ₃ . Pathway	C ₄ . Pathway	CAM – pathway
1. I st stable compound is 3.C	1. Ist stable compound is 4C	1. First formed compound is
PGA	O.A.A.	O.A.A.
2. 18 ATP & 12 NADPH ₂ used	2. 30 ATP & 12 NADPH ₂ used	2. 30 ATP and 12 NADPH ₂ used
for 1 glucose formation	for 1 glucose formation	for Production of 1 glucose
3. Kranz anatomy absent	3. Kranz anatomy present	3. Kranz anatomy absent
4. Presence of	4. Absence of photorespiration	4. Photorespiration may present
photorespiration	Two type of	5. Two types of
5. One type of	carboxylase enzyme	carboxylase enzyme
carboxylase enzyme,	Rubisco & PEP case	Rubisco & PEP case
Rubisco only	6. Primary CO ₂ acceptor –	6. High CO ₂
6. CO_2 acceptor – RUBP	PEP & RUBP is	compensation point
7. Exhibits high CO ₂	secondary acceptor Low	(40. 100 PPM)
compensation point	CO ₂ compensation point	7. High CO ₂
(40.100 PPM)	(8 – 10 PPM)	compensation point
8. Transpiration ratio		(40. 100 PPM)
(TR) 500 – 1000	8. TR – 200 – 300	8. TR – 50 – 100