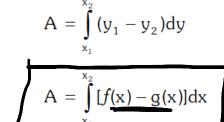
9) Find the area in the first quadrant bounded by $y = 4x^2$, x = 0, y = 1 and y = 4. Parabola 3d2 + J(4-4x2)dx

*AREA ENCLOSED BETWEEN TWO_CURVES

Area bounded by two curves y = f(x) & y = g(x)(a) such that f(x) > g(x) is

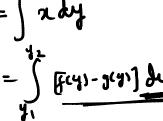


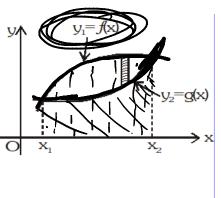


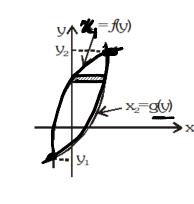
In case horizontal strip is taken we have

$$A = \int_{y_1}^{y_2} (x_1 - x_2) dy$$

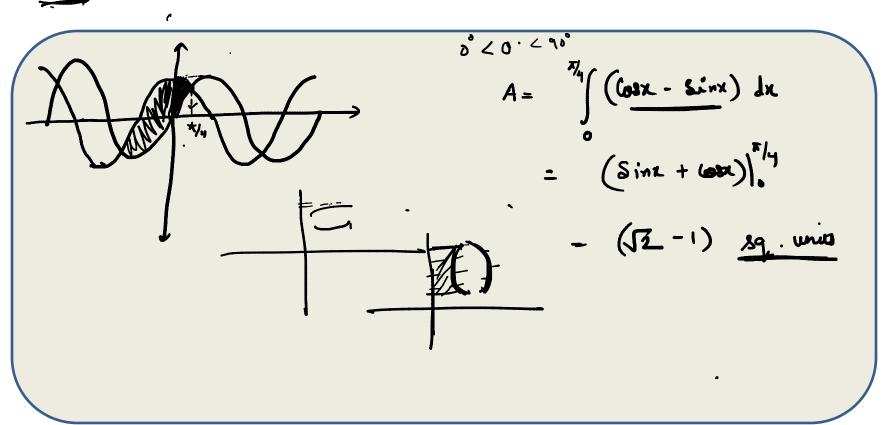
$$A = \int_{y_1}^{y_1} [f(y) - g(y)] dy$$





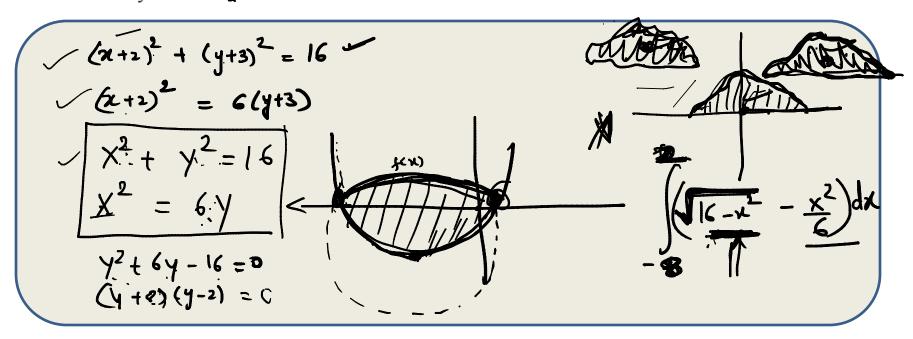


Find the area enclosed between $y = \sin x$; $y = \cos x$ and y-axis in the 1st quadrant



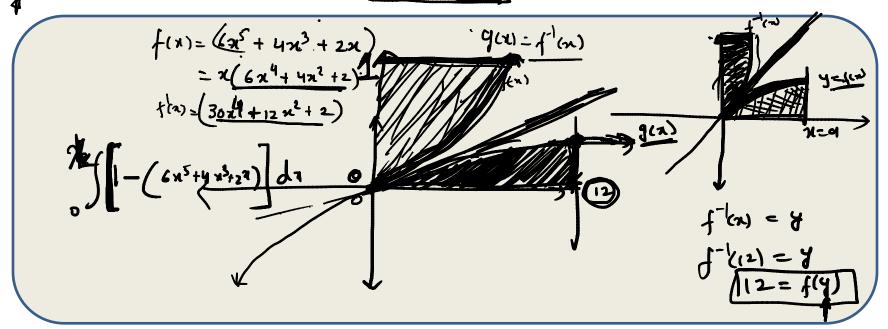
IMPORTANT POINTS:

- (a) Since area remains <u>invariant</u> even if the <u>co-ordinate axes are shifted</u>, hence shifting of <u>origin in many</u> cases proves to be very convenient in computing the area.
- **2** Find the area of the region common to the circle $x^2 + y^2 + 4x + 6y 3 = 0$ and the parabola $x^2 + 4x = 6y + 14$.



The area bounded by a curve & an axis is equal to the area bounded by the <u>inverse of that curve</u> & the <u>other axis</u>, i.e., the area bounded by y = f(x) and x-axis (say) is equal to the area bounded by $y = f^{-1}(x)$ and y-axis.

If y = g(x) is the inverse of a bijective mapping $f : R \to R$ $f(x) = 6x^5 + 4x^3 + 2x$, find the area bounded by g(x), the x-axis and the ordinate at x = 12.



USEFUL RESULTS:

- (a) Whole area of the ellipse, $x^2/a^2 + y^2/b^2 = 1$ is π ab sq.units.
- (b) Area enclosed between the parabolas $y^2 = 4$ ax & $x^2 = 4$ by is 16ab/3 sq.units.
- (c) Area included between the parabola $y^2 = 4$ ax & the line y = mx is $8 a^2/3 m^3$ sq.units.

