

15TH GROUP ELEMENTS

INTRODUCTION

Occurrence

Elements	NITROGEN
Occurrence	Atmosphere (78%)(free state), Nitrates (combined) Example – Chile salt petre (NaNO ₃) Indian salt petre (KNO ₃)

Occurance

Occurrence

1. The element belonging to group 15 is ...

a) H
b) O
c) P
d) Mg

2. The atomic number of Bismuth is ...

a) 7
b) 33
c) 51
d) 83

3. Indian salt petre is ...

a) KNO₃
b) NaNO₃
c) Mg(NO₃)₂

d) None of these

4. Phosphorous occurs in _____family.

a) Nitrate

b'Apatite

c) Oxide

d) None of these

ELECTRONIC CONFIGURATION PHYSICAL PROPERTIES OF 15TH GROUP ELEMENTS

According to Aufbau Principle an atom is "built up" by progressively adding electrons

Elements	Sym Ate Nu	bol & omic mber	Electronic Configuration	Brief rep of electronic configuration
Nitrogen	N	7	$1s^2 2s^2 2p^3$	[He] 2s ² 2p ³
Phosphorous	Р	15	1s ² 2s ² 2p ⁶ 3s ² 3p ³	[Ne] 3s ² 3p ³
Arsenic	As	33	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ³	[Ar] 3d ¹⁰ 4s ² 4p ³
Antimony	Sb	51	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	[Kr]4d ¹⁰ 5s ² 5p ³
Bismuth	Bi	83	$\frac{1s^2}{4s^2} \frac{2s^2}{2p^6} \frac{2s^2}{3s^2} \frac{3p^6}{3s^2} \frac{3d^{10}}{3s^2} \frac{4s^2}{4p^6} \frac{4d^{10}}{4s^4} \frac{4s^2}{5s^2} \frac{5p^6}{5d^{10}} \frac{5s^2}{6s^2} \frac{6p^3}{6p^3}$	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² 6p ³

 $\therefore \text{ GEC} \rightarrow \text{ns}^2 \text{ np}^3$

Atomic size

Elements	Elec. Config.	Diagram
Ν	[He] $2s^2 2p^3$	2-Energy levels
Р	[Ne] 3s ² 3p ³	3-Energy levels
As	[Ar] 3d ¹⁰ 4s ² 4p ³	4-Energy levels
Sb	[Kr] 4d ¹⁰ 5s ² 5p ³	5-Energy levels
Bi	[Xe] 4f ¹⁴ 5d ¹⁰ 6s ² 6p ³	6-Energy levels

Ionization Energy

It is the minimum amount of energy required to remove the most loosely bound e⁻ from the outer most shell of an isolated atom in the gaseous state What is Ionization energy ?

Ionization energy decreases down the group from Nitrogen to Bismuth due to the increase in atomic size.

METALLIC CHARACTER

ELEMENT	METALLIC CHARACTER
Ν	Non-metal
Р	Non-metal
As	Metalloid
Sb	Metalloid
Bi	Metal

1. Down the group, atomic size ...

a) Increases b) Decreases

c) No change

d) Can't say

- 2. The ionization enthalpies of removal of 1^{st} , 2^{nd} , & 3^{rd} electrons i.e. ΔH_1 , ΔH_2 , ΔH_3 are in the order ...
 - a) $\Delta H_1 > \Delta H_2 > \Delta H_3$
 - b) $\Delta H_1 > \Delta H_2 < \Delta H_3$
 - c) $\Delta H_1 < \Delta H_2 < \Delta H_3$
 - d) $\Delta H_1 < \Delta H_2 > \Delta H_3$

3. In group 15, ______ is the most electro negative element

a) P
b) As
c) Sb
d) N

4. Antimony is a...

a) Metal

b) Non metal

c) Metalloid

d) None of these

OXIDATION STATE

OXIDATION STATES

Compound	NAME	Oxidation State of N
NH ₃	AMMONIA	-3
N_2H_4	HYDRAZINE	- 2
NH ₂ OH	HYDROXYL AMINE	- 1
N ₃ H	HYDRAZOIC ACID	$-\frac{1}{3}$
N_2	DINITROGEN	0
N ₂ O	DINITROGEN MONOXIDE (LAUGHING GAS)	+ 1

OXIDATION STATES

Compound	NAME	Oxidation State of N
NO	Nitrogen monoxide	+ 2
HNO ₂ or N ₂ O ₃	nitrous acid <mark>or</mark> dinitrogen trioxide	+ 3
NO ₂ or N ₂ O ₄	nitrogen dioxide <mark>or</mark> Dinitrogen tetroxide	+ 4
HNO ₃ or N ₂ O ₅	nitric acid <mark>or</mark> dinitrogen pentoxide	+ 5

OXIDATION STATES

Characteristic electronic configuration : ns² np³ This suggests common oxidation states :- +3, +5, and -3

This cannot happen in Nitrogen due to lack of d orbitals

1. Stability of + 5 state decreases down the group due to ... effect.

Inert pair

b) Reactive pair

c) Joule - Thomson

d) None of these

2. The characteristic oxidation states of group 15 elements are...

3. Stability of +3 oxidation state, down a group ...

a) Decreases

b) Increases

- c) Does not change
- d) Can not predict

4. The electronic configuration of As (33) is...

```
a) [Kr] 4d<sup>10</sup>, 5s<sup>2</sup>, 5p<sup>3</sup>
b) [Ne] 3s<sup>2</sup>, 3p<sup>3</sup>
c) [Ar] 3d<sup>10</sup>, 4s<sup>2</sup>, 4p<sup>3</sup>
d) [He] 2s<sup>2</sup>, 2p<sup>3</sup>
```

CHEMICAL PROPERTIES OF 15TH GROUP ELEMENTS

Reactivity Towards Hydrogen

Type of hydride formed – MH₃ (NH₃, PH₃, AsH₃, SbH₃, BiH₃)

Stability of hydride.

Reactivity Towards Hydrogen

Type of hydride formed – MH₃ (NH₃, PH₃, AsH₃, SbH₃, BiH₃) (M= N, P, As, Sb, and Bi

All the hydrides of the type MH_3 are prepared by the action of water are dilute acids on their metal compounds.

Ex: $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$

Order of Reducing character of hydrides

 $NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$

Order of Basic nature of hydrides

 $\mathbf{NH}_3 > \mathbf{PH}_3 > \mathbf{AsH}_3 > \mathbf{SbH}_3 \geq \mathbf{BiH}_3$
Chemical properties

- **Reactivity towards Oxygen:**
- These elements react with Oxygen to form two types of oxides
- Trioxides $-M_2O_3$

- Pentoxides M₂O₅
- The Oxides in the higher oxidation state of the element is more acidic than that of lower oxidation state.
- Acidic character decreases down the group
- The trioxides of Nitrogen and Phosphorus are purely acidic, that of Arsenic and Antimony are amphoteric and that of Bismuth is predominantly basic .

- All Pentoxides are acidic.
- Except Bi other elements form pentoxides represented by M_4O_{10} .
- Tri-oxides dissolve in water giving Ous acids
- Pentoxides dissolve in water giving ic acids

Reactivity towards metals :

These elements react with metals to form binary compounds in which VA group element exhibits – 3 oxidization state.

Example:

$$6Mg + N_2 \longrightarrow 2Mg_3N_2$$

$$Magnesium nitride$$

$$6Ca + P_4 \longrightarrow 2Ca_3P_2$$

$$Calcium phosphide$$

Reactivity towards halogens:

- These elements form two types of halides
- Trihalides MX₃

- Pentahalides MX₅
- Nitrogen does not form petahalides due to non availability of the d-orbitals in it's valence shell.
- Pentahalides are more covalent than trihalides because the elements in the higher oxidation state exert more polarizing power
- All trihalides of these elements except nitrogen are stable.
- In case of nitrogen halides only NF₃ is stable
- Trihalides except BiF₃ are predominantly covalent in nature

1. N₂ reacts with metals to give...

a) Nitrites

b) Nitrates

c) Nitrides

d) Nitriles

2. The most basic group 15 hydride is....

•/NH₃ b) BiH₃ c) SbH₃ d) AsH₃

3. P_4 + NaOH + $H_2O \longrightarrow$

- a) PH₃
 b) H₃PO₄
 c) P₂O₅
- d) All of these

DINITROGEN (N₂)

PREPARATION:-

1. Laboratory method:

• In the laboratory Dinitrogen prepared by treating an aqueous solution of Ammonium chloride with Sodium nitrite

NH ₄ Cl	+	NaNO ₂ –	\rightarrow N ₂	+	2H ₂ O	+ NaCl
ammonium chloride		Sodium nitrite	Dinitrogen			
	Make a note					
Sm	all an pass	nounts of NO sing the gas the	and HNO ₃ rough aq. H ₂	forı <mark>SO</mark> 4	med, ren + K ₂ Cr ₂	oved by O ₇ .

3. By thermal decomposition of ammonium dichromate :

• N₂ can also be obtained by the thermal decomposition of ammonium dichoromate.

$$(NH_4)_2Cr_2O_7 \xrightarrow{(\Delta)} N_2 + Cr_2O_3 + 4H_2O$$

Ammonium
dichromate

4. From suspension of bleaching powder and ammonia

5. Thermal decomposition of metal azides :

• Very pure nitrogen can be obtained by the thermal decomposition of sodium or barium azide

Highly pure form of dinitrogen is obtained by this method.

PROPERTIES OF DINITROGEN (N₂) : -

- 1. Di nitrogen is a colourless, odorless, tasteless and non ionic gas.
- **2.** It has two stable isotopes ${}^{11}N$ and ${}^{15}N$
- 3. It has a very low solubility in water (23.2 cm per litre of water at 273k and 1 bar pressure). And low freezing and boiling points.
- 4. Di nitrogen is inert at room temperature because of the high bond enthalpy of N≡N bond. And reactivity increases rapidly with rise in temperature

1. Commercial method of preparation of N₂ involves...

a) Sublimation

- **b** Fractional distillation of liquid air
- c) Freezing
- d) Evaporation

2. An azide ion is...

a) NO₃
b) N₂
c) N₃
d) Any of these

- 3. In the lab method , NH₄Cl is reacted with _____ to produce N₂ gas
 - a) NaNO₃
 b) NaNO₂
 c) HNO₃
 d) HNO₂

- 4. N₂ can be produced by thermal decomposition of metal . . .
 - a) Sulphates
 - **b)** Nitrates
 - c) Sulphides
 - d'Azides

CHEMICAL PROPERTIES OF NITROGEN

Chemical reactions

1. Action on metals : At high temperature N₂ directly combines with Li and Mg metals to form nitrides

 $6Li + N_2 \xrightarrow{(heat)} 2Li_3N \qquad \text{Lithium nitride}$ $3Mg + N_2 \xrightarrow{(heat)} Mg_3N_2 \qquad \text{Magnesium nitride}$ $2Al + N_2 \xrightarrow{(heat)} 2AlN \qquad \text{Aluminium nitride}$ 2. Action of dioxygen : $N_2 + O_2 \xrightarrow{(\Delta \text{ or heat})} 2NO$

Nitric oxide

Chemical reactions

3. Action of calcium carbide :

Chemical reactions

4. Action of dihydrogen:

Uses :

$$N_{2}_{(g)}$$
 + $3H_{2}_{(g)}$
 $773 K$ $2NH_{3(g)}$ ammonia

- Di nitrogen is mainly used in the manufacture of Ammonia and other industrial chemical containing nitrogen (Eg; CaCN₂)
- It is used to maintain the inert atmosphere (Eg: In iron and steel industry)
- Liquid dinitrogen is used as a refrigerant to pressure biological materially food items and in cryo surgery

1. $CaC_2 + N_2$ <u>1000°C</u> + C

- a) CaCO₃
- $b^{\gamma} CaCN_2$
- c) CaNC
- d) Ca(CN)₂

2. N_2 + metal \longrightarrow metal

a) Nitride

b) Nitrate

c) Nitrite

d) None of these

3. Dinitrogen and Dihydrogen \longrightarrow

a) Amine

b) Amide

c) Ammonia

d) None of these

ANOMALOUS PROPERTIES OF NITROGEN

Anomalous properties of nitrogen

Nitrogen differs from the rest of the members of this group due to its small size, high electronegativity, high ionisation enthalpy and non-availability of **d** orbitals.

Nitrogen has unique ability to form $p\pi - p\pi$ multiple bonds with itself and with other elements having small size and high electronegativity (Eg: C, O). Heavier elements of this group do not form $p\pi - p\pi$ bonds as their atomic orbitals are so large and diffuse that they can not have effective overlapping. thus, nitrogen exists as a diatomic molecule with a triple bond between the two atoms. Consequently, its bond enthalpy is very high. On the contrary, phosphorous, arsenic and antimony form single bonds as P-P, As - As and Sb - Sb.

While Bismuth forms metallic bonds in elemental state however the single N-N bond is weaker than the single P-P bond because of high interelectronic repulsion of the non-bonding electrons, owing to the small bond length.

As a result, the catenation tendency is weaker in nitrogen. Another factor which affects the chemistry of nitrogen is the absence of d orbitals in its valence shell. Besides restricting its covalency to four, nitrogen can not form $d\pi - p\pi$ bond e.g., R₃P=O.

Or $R_3P = CH_2$ (R= Alkyl group), phosphorous and arsenic can form $d\pi - d\pi$ bond also with transition metals.

Examples: $P(C_2H_5)_3$, $As(C_6H_5)_3$

PREPARATION OF AMMONIA

Preparation of Ammonia

2. Commercial method (Haber's process):

Optimum conditions :

- Pressure = 200 atm
- Temperature = about 700 K
- Catalyst = porous and finely divided IRON oxide
- **Promoters** = Molybdenum or $(K_2O \text{ and } Al_2O_3)$

Therefore, moist NH₃ is dried over quicklime i.e., CaO

Preparation of Ammonia

3. Action of calcium carbide (Cynamide process):

1. Ammonia is commercially prepared by _____ process.

a) Haber's

b) Vulcanization

c) Contact

d) Any of these

- 2. In the laboratory method of preparation of NH₃, _____ and Ca(OH)₂ are used.
 - a) NH₄NO₃
 - b) (NH₄)₂ CO₃
 - c) NH₄Cl
 - d) None of these

3. In Haber's process, the catalyst used is...

a) Iron oxide

b) Copper oxide

c) Carbon monoxide

d) All of the above

- 4. Low temperatures are used in Haber's process, as the forward reaction is...
 - a) Endothermic
 - **b** Exothermic
 - c) Either a & b
 - d) None of these

CHEMICAL PROPERTIES OF AMMONIA

Action of halogens :

2. Bromine :

Ammonia precipitates the hydroxides of many metals from their salt solutions

 $ZnSO_{4(aq)} + 2NH_4OH_{(aq)} \longrightarrow Zn(OH)_2(S) + (NH_4)_2 SO_4(aq)$ (White ppt) $FeCl_3 (aq) + NH_4OH(aq) \longrightarrow Fe_2O_3 \cdot xH_2O(S) + NH_4Cl(aq)$ (brown ppt)

Due to the presence of lone pair in ammonia, ammonia is used in detection of metal ions such as Cu⁺², Ag+

ExamplesAgCl_(s) + 2NH_{3(aq)}
$$\longrightarrow$$
 [Ag(NH₃)₂] Cl_(aq) ColourlessWhite ppt
 $Cu^{+2}_{(aq)+} 4 \text{ NH}_{3(aq)} \longrightarrow$ $\left(Cu(NH_3)_4\right)^{2+}$ Deep Blue ColourReaction of ammonia with Nessler's reagent:Hgl_{2(aq)} + 2KI_(aq) \longrightarrow K₂HgI_{4(aq)} (formation of Nessler's reagent)2K₂HgI₄ + NH₃ + 3KOH \longrightarrow H₂N - Hg - O - Hg - I + 7KI + H₂O
(Nessler's reagent)(Nessler's reagent)

- Due to the presence of lone pair of electrons in the nitrogen atom of the Ammonia NH₃ behaves as a Lewis base.
- > Hence it donates the electron pair and forms bond with metal ions.
- > So NH₃ is used in the detection of metal ions such as Cu^{+2} or Ag^+ .

Question

Why does NH₃ act as a Lewis base?

Answer:

Nitrogen atom in NH₃ has one lone pair of electrons which is available for donation. Therefore, it acts as a Lewis base .

Question

How does ammonia (aqueous solution is ammonium hydroxide) react with a solution of Cu^{2+} , a deep blue solution is obtained due to the formation of tertraamine copper(II) ion.?

Answer:

$$\operatorname{Cu}_{(aq)}^{2+} + 4\operatorname{NH}_{4}\operatorname{OH}_{(aq)} \longrightarrow [\operatorname{Cu}(\operatorname{NH}_{3})_{4}]^{2+} + 4\operatorname{H}_{2}\operatorname{O}$$

Tetraamine copper (II)ion(deep blue solution

1. _____ is the Nessler's reagent.

a) K₃HgI₂

 $b K_2 HgI_4$

c) $K_2Hg_2I_3$

d) All of these

2. $NH_3 + Cl_2$ (excess) \longrightarrow

a) NH₄Cl

b) NCl₅

c) NCl₃

d) All of these

3. The brown colour obtained in Nessler's reagent test is due to iodide of ______base.

a Millon's

b) Billion's

c) Trillion's

d) None of these

STRUCTURE & USES OF AMMONIA

Structure of Ammonia

- > Ammonia is expected to have a tetrahedral geometry
- The central nitrogen atom invloves sp³ hybridisation.
- > one position is occupied by a lone pair.

- etry 101.7 pm N H 107.80 H H
- > Three bond pairs and one lone pair of electrons as shown in the structure.

Structure of Ammonia

- > lone pair distorts its geometry and the molecule has pyramidal geometry with nitrogen atom at the apex.
- ➢ N−H bond length is 101.7 pm.
- > HNH bond angle is 107.8⁰

1. In NH₃, the central nitrogen atom is _____ hybridized

a) sp²
b) sp
c) sp³
d) dsp²

2. Ammonia has _____ geometry.

a) Tetrahedral

b) Pyramidal

c) Square planar

d) Linear

3. The HNH bond angle is ...

a) 109⁰ 28"

b) 120⁰

c) 90⁰
√) 107. 8⁰

4. Ammonia is _____ solvent.

a) Protogenic

b) Protophilic

c) Aprotic

OXIDES OF NITROGEN

Oxides of Nitrogen

Name	Formula	Oxidation state of nitrogen	Common methods of preparation	Physical appearance and chemical nature
Dinitrogen Monoxide or nitrous oxide (Nitrogen (I) oxide) (laughing gas)	N ₂ O	+ 1	$NH_4NO_3 \xrightarrow{Heat} N_2O + 2H_2O$	Colourless gas, neutral
Nitrogen monoxide or Nitric oxide (Nitrogen (II) oxide)	NO	+ 2	$2NaNO_{2} + 2FeSO_{4}$ + $3H_{2}SO_{4} \rightarrow$ Fe ₂ (SO ₄) ₃ + $2NaHSO_{4}$ + $2H_{2}O + 2NO$	Colourless gas, neutral
Dinitrogen trioxide (Nitrogen (III) oxide)	N ₂ O ₃	+ 3	$2NO + N_2O_4 \xrightarrow{250 \text{ K}} 2N_2O_3$ $NO + NO_2 \xrightarrow{N_2O_3}$	Blue solid , acidic

Oxides of Nitrogen

Name	Formula	Oxidation state of nitrogen	Common methods of preparation	Physical appearance and chemical nature
Nitrogen dioxide (Nitrogen (IV) oxide)	NO ₂	+ 4	$2Pb(NO_3)_2 \xrightarrow{673 \text{ K}} 4NO_2 + 2PbO+O_2$	Brown gas, acidic
Dinitrogen tetroxide (Nitrogen (IV) oxide)	N ₂ O ₄	+ 4	$2NO_2 \xrightarrow{Cool} N_2O_4$	Colourless solid/ liquid, acidic
Dinitrogen pentoxide (Nitrogen (V) oxide)	N ₂ O ₅	+ 5	$4 \text{ HNO}_3 + P_4 O_{10}$ $\rightarrow 4 \text{HPO}_3 + 2 \text{N}_2 \text{O}_5$	Colourless solid ,acidic

1. _____ is also called as laughing gas.

a) NO₂
b) NO
c) N O

c) N_2O_5

2. _____ is called as Nitrogen (III) oxide

a) NO₂
b) N₂O₅
c) N₂O₃
d) NO

3. The oxidation state of Nitrogen in NO₂ and N₂O₄ is _____ and ____.

4. N₂O₃ is prepared from _____ and _____

NO, NO₂
NO, NO₂
NO₂O₅, NO
NO₂, N₂
NO₂, N₂
NO, N₂O₄

NITRIC ACID

Preparation of Nitric acid

Laboratory method to prepare nitric acid.

 $\begin{array}{rcl} NaNO_3 &+ & H_2SO_4 & \longrightarrow & NaHSO_4 + & HNO_3 \\ Sodium & & & Nitric acid \\ nitrate & & & \end{array}$

Preparation of nitric acid on a large scale by Ostwald's process.

Step 1 $4NH_{3(g)} + 5O_2 \xrightarrow{Pt/Rh gauze catalyst}{500 \text{ K 9 bar}} 4NO_{(g)} + 6H_2O_{(g)}$ Nitric oxide Step 2 $2NO_{(g)} + O_{2(g)} \xrightarrow{2NO_{2(g)}}$ Nitrogen Dioxide Step 3 $NO_2 + H_2O_{(l)} \xrightarrow{2HNO_{3(l)}} + NO_{(g)}$ Nitric acid

- > HNO₃ is a planar molecule.
- ➢ Bond length between H−O is 96 pm
- **≻** O–N is 140.6 pm
- ➢ Bond angle between H−O−N is 102⁰
- ➢ Bond angle between O−N−O is 130⁰.

1. Nitric acid is commercially prepared by _____ process.

a) Haber's

b) Contact

c'Ostwald's

d) All of the above

2. The catalyst used in commercial preparation of nitric acid is ...

a) FeO b) Pt/ Rh c) Pd/Rh d) PtO

3. In the structure of HNO₃, the O – N – O bond angle is _____

a) 109°
b) 180°
c) 120°
d) 130°

4. $+ H_2SO_4 \rightarrow + HNO_3$

- a) NaNO₂, NaHSO₄
- b) NaHSO₄, NaNO₂
- c' NaNO₃, NaHSO₄
- d) NaHSO₄, NaNO₃

REACTIONS OF NITRIC ACID

The brown ring test. $NO_3^- + 3Fe^{2+} + 4H^+ \longrightarrow NO + 3Fe^{3+} + 2H_2O$ $[Fe(H_2O)_6]^{2+} + NO \longrightarrow [Fe(H_2O)_5(NO)]^{2+} + H_2O$ (Brown ring)

Action of HNO₃ on Gold and Platinum HNO₃ + 3HCl → NOCl + 2H₂O + 2[Cl] Nitrosyl chloride Au + 3[Cl] + 3HCl → 4AuCl₄ Tetrachloroaurate Pt + 4[Cl] + 2HCl → H₂PtCl₆ Chloroplatinic acid

> 2,4,6-trinitrophenol is called Picric acid (explosive in nature)

Action of concentrated HNO₃

With Cane sugar

 $\begin{array}{c} C_{12}H_{22}O_{11} + 18(O) \\ Cane Sugar \end{array} \xrightarrow{\text{conc. } H_2SO_4} HNO_3 \xrightarrow{\text{coore. } H_2SO_4} 6 \begin{array}{c} COOH + 5H_2O \\ COOH \\ Oxalic acid \end{array}$

1. Aqua regia is a 1 : 3 mixture of _____ and ____.

a) HCl, HNO₃
b) HNO₃, HCl
c) HNO₃, H₂SO₄
d) H₂SO₄, HNO₃

2. Nitrating mixture is a mixture of _____ and _____.

a) conc. H₂SO₄, conc. HCl

b'conc. H₂SO₄, conc. HNO₃

- c) conc. HCl, conc. HNO₃
- d) None of these

3. Brown ring test is done for _____ group

a) N₃⁻
b) NH₄⁺
c) NO₃⁻
d) All of these

4. C + 4 HNO₃ → A + 2H₂O + 4 NO₂ + C What is A?
a) CO
b) CO₂
c) H₂CO₃
d) None of these

TYPES OF NITROGEN OXIDE Dinitrogen oxide, N₂O (Laughing Gas)

- > It is also called nitrous oxide.
- > It is stable and colorless gas.
- > It has all electrons paired.
- > Diamagnetic.

 $: N \equiv N \rightarrow \ddot{O}: \leftrightarrow \ddot{N} = N = \ddot{O}$

Nitric oxide (Nitrogen monoxide), NO :

- > It is most stable oxide of nitrogen.
- > 'N' and 'O' together have 11 valence electrons.
- > An odd electron molecule.
- > Paramagnetic.

Nitric oxide (Nitrogen monoxide), NO :

> It acts as an oxidising and reducing agent.

 $\begin{array}{c} \vdots & \stackrel{+}{\mathbf{N}} & \vdots & \vdots \\ \vdots & \mathbf{N} &= & \mathbf{O} \\ \mathbf{O} &: & \mathbf{O} \\ \mathbf{O$

Nitrogen dioxide, NO₂

- > It is an acidic oxide
- > It is a reddish brown gas
- > It is paramagnetic
- \succ It is dimerizes to N₂O₄

Question

Why does NO₂ dimerise ?

Answer:

NO₂ contains odd number of valence electrons.

It behaves as a typical odd molecule.

On dimerisation , it is converted to stable $\mathrm{N_2O_4}$ molecule with even number of electrons.

- It's a planar molecule

Dinitrogen pentoxide N₂O₅

- > It is an unstable acidic oxide.
- > It is an excellent oxidizing agent.

Question

Q2. What is the covalency of nitrogen in N_2O_5 ?

Answer:

Structural formula of N₂O₅

Since, N atom has shared electron pair , the valence of N is 4

1. ______ is also called Laughing gas or Laughing grites
a) NO₂
b) NO
c) N₂O₅
is also called Laughing gas or Laughing grites

2. NO is...

a) Diamagnetic

b) Paramagnetic

c) Both a & b

d) None of these

- 3. NO₂ is reddish brown gas while N_2O_4 is _____.
 - a) Blackish gas
 - b) Brownish solid
 - c Colorless gas or solid
 - d) Bluish gas or solid

4. NO₂ is _____ while N_2O_4 is diamagnetic.

- a) Paramagnetic
- b) Diamagnetic
- c) Both a & b
- d) None of these

0 **Don't Forget to Like / Comment & Share this** video

