

TOPIC -EMI

Phasor and phasor diagram

Equation of V and i	Phase difference ϕ	Time difference T.D.	Phasor diagram
$V = V_0 \sin \omega t$ $i = i_0 \sin \omega t$ Phator diagram	0	0	$ \xrightarrow{ \text{or} V \longrightarrow \\ i V V \hline V V \hline V V \hline V V $
$V = V_0 \sin \omega t$ $i = i_0 \sin(\omega t + \frac{\pi}{2})$	$-\frac{\pi}{2}$	$\frac{T}{4}$	$ \begin{array}{cccc} & i & i \\ & \pi/2 & & \pi/2 \\ & V & & \pi/2 \\ & V & & & \end{array} $
$V = V_0 \sin \omega t$ $i = i_0 \sin(\omega t - \frac{\pi}{2})$	$+\frac{\pi}{2}$	$\frac{T}{4}$	$V \qquad \qquad$
$V = V_0 \sin \omega t$ $i = i_0 \sin(\omega t + \frac{\pi}{3})$	$-\frac{\pi}{3}$	$\frac{T}{6}$	$\bigvee_{V}^{\pi/3} \stackrel{i}{\underset{V}{\overset{\pi/3}{}}} $
			$\longrightarrow T$ $\longrightarrow T/y$

ں (

Im RT =

Im = Io

I RT

2

(1) **Resistance (R) :** The opposition offered by a conductor to the flow of current through it is defined as the resistance of that conductor. Reciprocal of resistance is known as conductance (*G*) *i.e.* $G = \frac{1}{R}$

(2) **Impedance** (*Z*) : The opposition offered by the capacitor, inductor and conductor to the flow of ac through it is defined as impedance. It's unit is $ohm(\Omega)$. $Z = \frac{V_0}{i_0} = \frac{V_{rms}}{i_{rms}}$

Impédance present equivalant presistance Z^r impédance. Unit of impédance V=Vo sinut V= TZ Z=Vms

(3) **Reactance** (*X*) : The opposition offered by inductor or capacitor or both to the flow of ac through it is defined as reactance. It is of following two type –

Inductive reactance (X_L)	Capacitive reactance (<i>X_c</i>)	
(i) Offered by inductive circuit	(i) Offered by capacitive circuit	
(ii) $X_L = \omega L = 2\pi \nu L$ For DC $f = 0$ $X_L = \omega L = 2\pi f L^{r}$ Selb inductance. $X_L = 0$ inductor is just a	(ii) $X_C = \frac{1}{\omega C} = \frac{1}{2\pi v C}$	
(iii) $v_{dc} = 0$ so for dc, $X_L = 0$ wise for DC.	(iii) For dc $X_c = \infty$ $X_c = \frac{1}{2\pi f c} = \frac{1}{0} = \infty$ It muss Lap. blocks DC	
(iv) $X_L - v$ Graph $X_L \uparrow \qquad $	(iv) $X_c - v \operatorname{Graph}_{X_c}$ $\downarrow \qquad \qquad$	
$\mathbb{N}_{\mathcal{A}}$ = Resultant reactance of <i>LC</i> circuit is defined as the second s	efined as $X = X_{c} \approx X_{c}$	

(4) Admittance (Y) : Reciprocal of impedance is known as admittance $\left(Y = \frac{1}{Z}\right)$. It's unit is <u>mho</u>.

(5) **Susceptance** (S) : the reciprocal of reactance is defined as susceptance $\left(S = \frac{1}{X}\right)$. It is of two type

(i) inductive susceptance $S_L = \frac{1}{X_L} = \frac{1}{2\pi v L}$ and (ii) Capacitive susceptance, $S_C = \frac{1}{X_C} = \omega C = 2\pi v C$.

(i) **Instantaneous power :** Suppose in a circuit $V = V_0 \sin \omega t$ and $i = i_0 \sin(\omega t + \phi)$ then $P_{\text{instantane ous}} = Vi = V_0 i_0 \sin \omega t \sin(\omega t + \phi)$

(ii) **Average power (True power) :** The average of instantaneous power in an ac circuit over a full cycle is called average power. It's unit is *watt i.e.*

between 0 and 1.

D For a pure resistive circuit $R = Z \Rightarrow p.f. = \cos \phi = 1$

The component of current which does not contribute to the average power dissipation is called wattless current

(i) The average of wattless component over one cycle is zero

(ii) Amplitude of wattless current = $i_0 \sin \phi$

and *r.m.s.* value of wattless current = $i_{rms} \sin \phi = \frac{i_0}{\sqrt{2}} \sin \phi$.

It is quadrature (90 $^{\circ}$) with voltage

Different ac Circuit

(1) *R*, *L* and *C* circuits

Circuit	Purely resistive	Purely inductive	Purely capacitive
characteristics	(<i>R</i> -circuit)	(L-circuit)	(C-circuit)
(i) Circuit	$ \begin{array}{cccc} R \\ \hline i & \underline{I} & \searrow & \Delta \phi = o^{\circ} \\ \hline Z = R \\ \hline & & & & \\ \hline & & & & \\ \end{array} $ $ V = V_0 \sin \omega t $	$V = V_0 \sin \omega t$	$i Pure cap.$ $V = V_0 \sin \omega t$
(ii) Current	$i = i_0 \sin \omega t$	$i = i_0 \sin\left(\omega t - \frac{\pi}{2}\right)$	$i = i_0 \sin\left(\omega t + \frac{\pi}{2}\right)$
(iii) Peak current	$i_0 = \frac{V_0}{R}$	$i_0 = \frac{V_0}{X_L} = \frac{V_0}{\omega_L} = \frac{V_0}{2\pi v L}$	$i_0 = \frac{V_0}{X_C} = V_0 \omega C = V_0 (2\pi v C)$
(iv) Phase difference	$\phi = 0^{\circ}$	$\phi = 90^{\circ} \text{ (or } + \frac{\pi}{2})$	$\phi = 90^{o} (\text{or} - \frac{\pi}{2})$
(v) Power factor	$\cos \phi = 1$	$\cos\phi = 0$	$\cos\phi = 0$
(vi) Power	$P = V_{rms}i_{rms} = \frac{V_0i_0}{2}$	P = O $P = O$	<i>P</i> = 0
(vii) Time difference	TD = O	$TD = \frac{T}{4}$	$TD = \frac{T}{4}$
(viii) Leading quantity	Both are in same phase	Voltage	Current
(ix) Phasor diagram	\overrightarrow{V} i	$V \xrightarrow{90^{\circ}} i$	$v \int_{90^{\circ}}^{90^{\circ}} i$

 $los \phi = \frac{R}{Z}$

(2) *RL*, *RC* and *LC* circuits

(2) <i>RL</i> , <i>RC</i> and	$(Z = X_L - X_L) \text{if } X_L = X$		
Circuit	<i>RL</i> -circuit	RC-circuit	LC-circuit Z=0
characterstics			Vrml = VL-VC
(i) Circuit	$ \begin{array}{c} R & L \\ \hline WWW & WWW \\ \hline WWW & WL \\ \downarrow i \\ \hline \end{array} $	$ \begin{array}{c} R & C \\ \hline WWV & \\ \downarrow \\ \downarrow \\ V_R \rightarrow \longleftarrow V_C \rightarrow \\ i \\ \hline \end{array} $	$ \begin{array}{c} L & C \\ \downarrow \\ \downarrow$
	$V_R = iR$, $V_L = iX_L$	$V_R = iR, V_C = iX_C$	$V_L = iX_L, V_C = iX_C$
	$V = V_0 \sin \omega t$	$V = V_0 \sin \omega t$	$V = V_0 \sin \omega t$
(ii) Current	$i = i_0 \sin\left(\omega t - \phi\right)$	$i = i_0 \sin\left(\omega t + \frac{\phi}{2}\right)$	$i = i_0 \sin\!\left(\omega t \pm \frac{\pi}{2}\right)$
(iii) Peak current	$i_0 = \frac{V_0}{Z} = \frac{V_0}{\sqrt{R^2 + X_L^2}}$	$i_0 = \frac{V_0}{Z} = \frac{V_0}{\sqrt{R^2 + X_C^2}}$	$i_0 = \frac{V_0}{Z} = \frac{V_0}{X_L - X_C}$
	$=\frac{V_0}{\sqrt{R^2 + 4\pi^2 v^2 L^2}}$	$=\frac{V_0}{\sqrt{R^2 + \frac{1}{4\pi^2 v^2 C^2}}}$	$= \frac{V_0}{\omega L - \frac{1}{\omega C}}$
(iv) Phasor diagram	V_L V V V_R i		$V = (V_L - V_C) \qquad \qquad$
(v) Applied voltage	$V = \sqrt{V_R^2 + V_L^2}$	$V = \sqrt{V_R^2 + V_C^2}$	$V = V_L - V_C$
(vi) Impedance	$Z = \sqrt{R^{2} + X_{L}^{2}} = \sqrt{R^{2} + \omega^{2}L^{2}}$ $= \sqrt{R^{2} + 4\pi^{2}\nu^{2}L^{2}}$	$Z = \sqrt{R^2 + X_C^2} = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$	$Z = X_L - X_C = X$
(vii) Phase difference	$\phi = \tan^{-1} \frac{X_L}{R} = \tan^{-1} \frac{\omega L}{R}$	$\phi = \tan^{-1} \frac{X_C}{R} = \tan^{-1} \frac{1}{\omega CR}$	$\phi = 90^{\circ}$
(viii) Power factor	$\cos\phi = \frac{R}{\sqrt{R^2 + X_L^2}}$	$\cos\phi = \frac{R}{\sqrt{R^2 + X_C^2}}$	$\cos\phi = 0$

SAFALTA.com

ITT-JELVIET-PHYSICS
TOPIC - EMI

(ix) Leading quantity Voltage
Current Either voltage or
current

Not: I In *LC* circuit if
$$X_k = X_c \Rightarrow V_k = V_c$$
 then resonance occurs and
resonant frequency (natural frequency $\omega_0 = \frac{1}{\sqrt{LC}} rad/sec$ or
 $v_0 = \frac{1}{2\pi\sqrt{LC}} IL$

**Series *RLC* Circuit

**Series *RLC* Circuit

 $v_0 = \frac{1}{\sqrt{LC}} V$

 $v_0 = \frac{1}$****

(vi) These circuit are used for voltage amplification and as selector circuits in wireless telegraphy.

(9) Resonant frequency (Natural frequency)

At resonance $X_L = X_C$

$$\Rightarrow \omega_0 L = \frac{1}{\omega_0 C} \Rightarrow \omega_0 = \frac{1}{\sqrt{LC}} \frac{rad}{sec} \Rightarrow v_0 = \frac{1}{2\pi\sqrt{LC}} Hz \text{ (or } cps)$$

(Resonant frequency doesn't depend upon the resistance of the circuit)

Quality factor (Q - factor) of series resonant circuit

The characteristic of a series resonant circuit is determined by the quality factor (Q - factor) of the circuit.

It defines sharpness of i - v curve at resonance when Q - factor is large, the sharpness of resonance curve is more and vice-versa.

Q - factor also defined as follows

$$Q - \text{factor} = 2\pi \times \frac{\text{Maximum energy stored}}{\text{Energy dissipation}} = \frac{2\pi}{T} \times \frac{\text{Maximum energy stored}}{\text{Mean power dissipated}}$$
$$= \frac{\text{Resonant frequency}}{\text{Band width}} = \frac{\omega_0}{\Delta \omega}$$

