

GROUP 14 ELEMENTS

INTRODUCTION & PROPERTIES OF IVA GROUP ELEMENTS

GROUP 14th ELEMENTS

	_			_						T elec ele	They trop	y for Dosi	rm a tive pativ	a lin (IA ve ()	kb to VA 1	etw III 4 to V	een A) a TI 4	ind
С								н	-				elei	men	ts			Не
Si	Li	Ве									-	-	В	С		0		Ne
	Na	Mg											AI	Si	Р	S	Cl	Ar
Ge	к	Ca	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Sn	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
	Cs	Ва	La*	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Pb	Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	Uub	-	Uuq	-	Uuh	-	-

* Lanthanoids	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
** Actinoids	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1) Electronic configuration

$$6 C = 1s^2 2s^2 2p^2$$

$$14^{\mathbf{Si}} = 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^2$$

$$32 \mathbf{Ge} = 1s^{\frac{2}{2}} 2s^{\frac{2}{2}} 2p^{\frac{6}{3}} 3s^{\frac{2}{2}} 3p^{\frac{6}{3}} 3d^{\frac{10}{4}} 4s^{\frac{2}{2}} 3d^{\frac{10}{4}} 4p^{\frac{2}{2}} 4p^{\frac{2}{2}}$$

1) Electronic configuration

 $50 \frac{\text{Sn}}{4\text{p}^{6} 45\text{k}^{20} 46\text{s}^{10}} = 18^{2} 28^{2} 2\text{p}^{6} 38^{2} 3\text{p}^{6} 3\text{k}^{20} 3\text{k}^{20} 34\text{s}^{10}$

$$82 Pb = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 3d^{20} 3d^{12} 4p^{6} 4p^{5} 4d^{10} 4p^{6} 4p^{5} 4d^{10} 4p^{6} 4p^{5} 4d^{10} 4p^{6} 4p^{6} 4p^{5} 4d^{10} 4p^{6} 4p^{6} 4p^{6} 4p^{6} 4d^{10} 4p^{6} 4p^{6} 4p^{6} 4p^{6} 4d^{10} 4p^{6} 4p^{6$$

General electronic configuration is *ns² np²*

GROUP 13 ELEMENTS

Abundance :

Abundance of these elements in earth crust is Si > C > Sn > Pb > Ge

Occurrence :

- Carbon exists in elemental state & also in combined state
- Silicon exists as silica and silicates
- Tin exists as cassiterite (or) Tinstone SnO₂
- Lead exists as Galena PbS, cerussite PbCO₃

2) Atomic or ionic radius

₈₂Pb

6 ^C	0								
Elenie	nts ©	С	Si	Ge	Sn	Pb			
At. Rădii	0 m	77	118	122	140	146			
50 ^{Sn}									

Down the group atomic size increases with increase in atomic number due to the addition of new shells

Ionization enthalpy decreases from C to Sn and marginally increases for Pb.

.: 'C' has highest IE in IVA group

 1^{st} I.P. order C > Si > Ge > Pb > Sn

4) Electro negativity

The tendency of an atom to Wahataist clacsha receptivity? electrons towards itself. o Si but from Si to Sn

Electro negativity decreases from C to Si but from Si to remains almost constant and marginally increases for Pb.

Elements	С	Si	Ge	Sn	Pb
E.N values	2.5	1.8	1.8	1.8	1.9

Therefore, carbon is the most electro negative element among IVA or group 14th elements.

5) Physical properties

- All group IVA elements are solids.
- **C** & Si = non-metals, Ge & Sn = metalloids and Pb = soft Metal.
- Down the group there is a regular decrease in melting & boiling points but densities increase.
- \blacktriangleright M.P :- C > Si > Ge > Pb > Sn

➢ B.P :- C > Ge > Sn > Si > Pb

Density : -
$$C$$
 Si Ge Sn Pb
inc i.e, Pb > Sn > Ge > C > Si

5) Physical properties

Group IVA elements have higher melting & boiling points than group IIIA elements due to increase in nuclear charge and more compactness.

1. Well known Radio active isotope of carbon is...

2. Which of the IVA group element shows highest density?

a) C b) Si c) Sn d) Pb

- **3.** The number of valency electrons in carbon atom...
 - a) 2
 b) 3
 c) 4
 d) 6

4. Which of the following element is a soft metal with lower melting point.?

a) C b) Si c) Ge d) Pb 5) If electronegativity of 'Si' is 1.8 then electronegativity of 'Ge' is

a) 1.7 b) 1.9 √1.8 d) 1.6

CHEMICAL PROPERTIES OF IVA GROUP ELEMENTS (PART-I)

Chemical Properties IVA group elemp

Oxidation state and trends in chemic

Their common oxidation states are

The tendency of the outer s-electrons to remain paired & not take part in bonding down the group because of poor shielding

- Their valence shells contain 4 electrons so the maximum possible oxidation state is +4.
- Lower members in the group shows +2 oxidation state more than +4 oxidation state due to *inert pair effect*.

Chemical Properties IVA group elements

Oxidation state and treads in chemical reactivity:

- C = stable +4 & -4 oxidation state
- **Si & Ge =** stable +4 oxidation state
- **Sn & Pb =** stable +2 oxidation state

Due to the **absence** of d-orbitals carbon cannot expand its covalence more than 4.

GROUP 13 ELEMENTS

The stability of M⁺⁴ (or) +4 O.S decreases

i.e., $Ge^{+4} > Sn^{+4} > Pb^{+4}$

The stability of M^{+2} (or) +2 O.S increases

i.e., $Ge^{+2} < Sn^{+2} < Pb^{+2}$

Pb⁺⁴ is less stable, thus act as oxidising agent

Pb⁺⁴ + 2e⁻ \longrightarrow Pb²⁺ Less stable More stable

Element	Metallic Nature	Colour	Oxidation States		
₆ C	Non Metal	Black	+4,		
₁₄ Si	Non Metal	Light brown	+4,		
₃₂ Ge	Metalloid	Greyish white	+4, +2		
₅₀ Sn	Metal	Silvery white	+4, +2		
₈₂ Pb	Metal	Silvery white	+2, +4		

Chemical Properties IVA group elements

i) Reactivity towards oxygen

a) Monoxides

They form two types of oxides with oxygen

$$2 M + O_2 \xrightarrow{(\Delta)} 2 MO$$
(limited) Where, M = IVA group element

b) Dioxides
$$M + O_2 \xrightarrow{(\Delta)} MO_2$$
(excess)

Chemical Properties IVA group elements

Chemical Properties of IVA group elements (part-II)

Chemical Properties IVA group elements

ii) Reactivity towards water

In IVA group, only tin (Sn) reacts with boiling water to form dioxide and dihydrogen gas.

NOTE : Lead is not affected by water due to an oxide film layer on the surface

Chemical Properties IVA group element

iii) Reactivity towards halogen

Heavier members Ge to Pb form MX₂.

Tetra chlorides are easily hydrolyzed by water due to presence of d-orbitals exercised which

It happens because the central atom can accomodate the lone pair of electrons from oxygen atom of water molecule in d - orbitals

Chemical Properties IVA group elements

iii) Reactivity towards halogen

1. $[SiF_6]^{2-}$ is known where as $[SiCl_6]^{2-}$ not, give the reasons.

Ans:

- ➢ 6 large chloride ions cannot be accommodated around Si⁴⁺ due to the limitation of its size.
- ➢ Interaction between lone pair of Chloride ion and Si⁴⁺ is not very strong.

1.Why Pb is not affected by water?

- a) Protective chloride layer formation
- **b Protective oxide layer formation**
- c) Both A & B
- d) None of the above

ANOMALOUS BEHAVIOUR OF CARBON
Reasons

- a) absence of **d-orbitals**.
- b) very small Atomic size (77 pm).
- c) very high Electro negativity (2.5).
- d) very high Ionization enthalpy (1086 kJ/mol).
- e) Presence of only two electrons in the penultimate shell

A nomelous behaviour of earbon					
Elements	С	Si	Ge	Sn	Pb
At.Radii (pm)	77	118	122	140	146

Important trends

;

Elements	С	Si	Ge	Sn	Pb
E. N	2.5	1.8	1.8	1.8	1.9
values					
Elements	С	Si	Ge	Sn	Pb
I.E values	1086	786	761	708	715
NJ/11101					

3) Due to the absence of d-orbital's, it has no tendency to form complex ions. As a result, its maximum covalency remains at 4.

$${}_{6}C = 1s^{2} 2s^{2} 2p^{2} \text{ (no d- orbital's)}$$

$$G.S. C = 1L 1L 11$$

$$C.S. C = 1L 1 11$$

Important trends

4) Carbon forms $p\pi - p\pi$ multiple bonds with itself and others.

Example

C = C $C \equiv C$ C = 0 C = S and $C \equiv N$

> Other elements do not form $p\pi - p\pi$ bonds because their atomic orbitals are too large to diffuse.

5) Carbon shows a strong tendency of catenation by virtue of which it forms thousands of compounds. It happens because C – C bonds are very strong.

Down the group, the size increases and electro negativity decreases and thereby,

tendency to show catenation decreases.

It can be understood by bond enthalpy values.

Bond enthalpy (kJ/mol)	C - C	Si - Si	Ge - Ge	Sn - Sn	Pb - Pb
	348	297	260	240	81

•• Order of Catenation =
$$C >> Si > Ge \approx Sn$$

Whereas Lead does not show catenation.

2. Which of the following ion does not exist?

a) [SnF₆]²⁻
b) [GeF₆]²⁻
c) [SiF₆]²⁻
d) [CF₆]²⁻

Allotropes of Carbon

Due to catenation and $p\pi - p\pi$ bond formation, carbon shows allotropic forms.

Each Carbon is linked to 4 other carbons in tetrahedral fashion by covalent bonds.

Diamond

Since all four valence electrons of carbon are involved in bonding there is no free electron & so it is a bad conductor of electricity.

Diamond Uses

- Diamond as a precious stone and is us in jewellery & also in ornaments.
- Diamond is used as an abrasive for sharpening hard tools.

- Diamond is also used in the manufacture of tungsten filaments for electric bulbs.
- > Diamond is used for making dyes & for rock drilling.

Diamond

Diamond is covalent, yet it has high melting point.why?

Diamond has 3D network involving strong C-C bonds,which are very difficult to break and, in turn has high melting point

Graphite

Each layer is composed of planar hexagonal rings of carbon atoms

Graphite

> In graphite each C-atom is sp^2 -hybridized.

In graphite the fourth electron forms a π bond. The electrons are delocalised over the whole sheet & is mobile. So it is a good conductor of electricity.

Graphite USES

- Graphite is soft & slippery. So, used as a dry lubricant instead of oil.
- As graphite can conduct electricity, it is used to prepare electrodes.
- When mixed with wax or clay, graphite is used to make cores of lead pencils.
- > Graphite is also used in the manufacture of dry cells & batteries.

4. The C-C bond length and the distance between adjacent layers in graphite are respectively.

a) 1.54A⁰, 3.35A⁰
b) 1.4A⁰, 2.35A⁰
c) 1.415A⁰, 3.35A⁰
d) 3.35A⁰, 1.42A⁰

FULLERENES

Kroto Smalley and Curt, got Nobel Prize for the discovery of Fullerenes which is a crystalline allotrope of carbon

Kroto Smalley and Curt

Fullerenes Preparation

When graphite is heated in an electric arc in an inert atmosphere (He or Ne) a sooty material formed by condensation of vapourised

"C_n" molecules are known as fullerenes.

Fullerenes Preparation

Major quantity is of C_{60} , traces of C_{70} and traces of fullerenes consisting of even number of carbon atoms upto 350 or above, like C_{540} .

Fullerenes

Fullerenes being covalent are readily soluble in organic solvents.

Fullerenes react with group 1 metals forming K₃C₆₀ solid which behave as a super conductor below 18 K.

::Note::

Superconductivity is a phenomenon of exactly zero electrical resistance and expulsion of magnetic fields occurring in certain materials when cooled below a characteristic critical temperature.

Fullerenes

C₆₀ molecule has a shape likes soc ball, and called *Buckminsterfullerene*

Fullerenes

::Note ::

six membered ring is fused with six or five membered ring but a five membered ring can only be fused with five membered ring.
Fullerenes

- > Carbon atoms undergo SP² hybridization.
- **Each C forms 3 sigma bonds with other carbons.**
- > The remaining electron is responsible for aromatic character.
- > They have 60 vertices. And each one is occupied by one carbon.

::Note ::

Graphite is thermodynamically most stable allotrope of carbon. Therefore ΔH_f of graphite is taken as zero and for diamond and fullerenes have 1.9 and 38.13 kJ mole⁻¹ respectively.

1. Formula of first well known Bucky ball is ...

Fullerenes

C₆₀ molecule has a shape likes soccer ball, and called Buckminsterfullerene or Bucky balls

2. Structure of the fullerene...
a) cricket ball
b) Volley ball
c) Tennis ball
d) Soccer football

4. The carbon in Diamond, graphite, fullerenes undergo______ hybridisation

a) sp³,sp²,sp²
b) all are sp³
c) all are sp²
d) sp³,sp², sp

CHEMICAL PROPERTIES OF CARBON

1) Action of oxygen :

2) Action of Water at room temperature:

3) Action of halogens :

$$C_{(s)} + 2X_2 \xrightarrow{(\Delta)} CX_4$$

E.g.:

 $CF_4, CCI_4, CBr_4, CI_4.$ also, $CF_2, CCI_2, CHCI_3, CH_2CI_2$ etc.

- **CCl₄** = Pyrene (trade name) (fire extinguisher)
- $CF_2Cl_2 = Freen (refrigerant)$

4) Formation of carbides

- > Used as electrodes in batteries & also in industrial electrolysis.
- Used to prepare crucibles in laboratory as they are inert towards acids & alkalies.

Uses of carbon:

c) Charcoal

Activated charcoal is used as a good adsorbent for adsorbing poisonous gases & removing coloring impurities from water.

- 3. Being a good conductor, graphite is used as..
 - a) electrodes in batteries
 - b) electrodes in industrial electrolysis
 - c) crucibles in laboratory

1. a,b 2. b,c 3. c,a 4/a,b,c

SILICONES

Silicones

 "Silicones are synthetic organo silicon polymers containing repeating units R₂SiO held by Si – O – Si linkages".

Empirical formula 🛁

 \Rightarrow R₂SiO

Where R can be alkyl(ex: methyl-CH₃)or aryl (phenyl-C₆H₅)

> What are silicones ?

Simple silicones consist of $(-S_i - O)_n$ chains in which alkyl or phenyl

groups occupy the remaining bonding positions on each silicon. They are hydrophobic (water repellant) in nature

Preparation of silicones

- The starting material for the manufacture of silicones are alkyl or aryl substituted silicon chlorides (R_nSiCl_[4-n]).
- Methyl chloride reacts with silicon in the presence of copper as a catalyst at 573K to form methyl substituted chlorosilane.
- > Hydrolysis of dimethyldichlorosilane $(CH_3)_2SiCl_2$ followed by condensation polymerization gives straight chain polymers.
- **RSiCl**₃ used for preparation of cross linked silicone.
- The chain length of silicone polymer can be controlled by adding R₃SiCl

Preparation of silicones Step – III Termination

The chain growth of the polymer can be controlled by adding chloro trimethyl silane .

Uses of silicones

> Silicones are used in textiles and also to prepare water proof papers .

> Silicones are used as lubricants at high and low temperatures .

> Silicones are also used as a sealant,

Electrical insulation

Because of its biocompatibility, it plays an important role in surgical and cosmetic plants.

SILICATES & ZEOLITES

Silicates

"Silicates are the oxo-anions of silicon having *SiO*₄⁴⁻ units forming a tetrahedral geometry".

Sources of silicates

Silicates

A large number of silicate minerals exist in nature. Some important minerals are mentioned below:

2) Mica

3) Zeolites

4) Asbestos

Silicates Structure

 SiO_4^{4-} has tetrahedral geometry.

Silicates Types

Depending on the number of corners of SiO₄⁴⁻ units shared silicates are classified as:

2) Pyro silicates

3) Chain silicates

GROUP 13 ELEMENTS

Ortho silicate	Si 0 4 ⁻
Pyro silicate	$Si_2O_7^{2-}$
Chain silicate	$(SiO_3)_r$
Cyclic silicate	Si ₃ 09 ^{6–}

Sheet Silicates : -

Here "3" oxygen atoms of each SiO₄ tetrahedral units are shared

-2

Frame work Silicates :

Here "4" oxygen atoms of each SiO₄ tetrahedral units are shared

Zeolites

icon atoms from a three overall structure known as a negative charge.

- > It is used for *cracking of hydrocarbons* and *isomerization*.
- > ZSM 5 is used to convert *alcohols directly into gasoline*.
- > Hydrated zeolites are used as *ion exchangers in softening of "hard water"*.

GROUP 13 ELEMENTS

Fuel Gases : -

	Fuel Gas	Composition	Calorific value
1)	Watergas (Synthesis gas)	CO = 40 - 50% $H_2 = 45 - 50\%$	13000 KJ / m ³ Endo thermic
2)	Producer gas	$CO = 33\%$ $N_2 = 64\%$ remaining CO ₂ & H ₂	5439.2 KJ / m ³ Exo thermic
3)	Semi water gas	$\mathbf{CO} + \mathbf{N}_2 + \mathbf{H}_2 + \mathbf{CH}_4$	7524 KJ / m ³
4)	Carburetted Watergas	CO + H ₂ + Hydrocarbons	

3. Zeolites are...

a) Negatively charged
b) Positively charged
c) Neutral species
d) All of the above

- 4. Zeolites are used ...
 - a) In cracking of hydro carbons
 - b) as ion exchangers in softening of hard water
 - c) in the isomerisation of hydrocarbons
 - d) in the conversion of alcohols to gasoline

 1) a, b, c
 2) b, c, d

 3) d, a, b
 4) a,b,c,d

IVA GROUP ELEMENTS

PREVIOUS COMPETATIVE QUESTIONS

PCQS

1) The gas evolved on heating CaF₂ and SiO₂ with concentrated H₂SO₄, on hydrolysis gives a white gelatinous precipitate. The precipitate is : [J.M.O.L - 2014]

1) Hydrofluosilicic acid

2) Silica gel

3) Silicic acid

4) Calcium fluorosilicate

2) Example of a three-dimensional silicate is : [J.M.O.L – 2014]

1) Zeolites

2) Ultramarines

3) Feldspars

3) Amongst the following, identity the species with an atom in +6 oxidation state : [J.M.O.L - 2014]

[MnO₄]⁻
 [Cr(CN)₆]³⁻
 Cr₂O₃
 CrO₂Cl₂

4) Which one of the following elements reacts with steam? [E - 2014]

1) Ge 2) Si 3) Sn 4) C

- 5) The major product formed when 1, 1, 1-trichloro-propane is treated with aqueous potassium hydroxide is : [J.M.O.L 2014]
 - 1) Propyne2) 1 Propanol
 - 3) 2 Propanol **Solution Solution Solution Solution Solution**

6) Which of the following exists as a covalent crystals in the solid state ? [JEE - 2013]

1) Iodine

2) Silicon

3) Sulphur4) Phosphorus

7) Identify the incorrect statement : [J.M.O.L – 2013]

In (Si₃O₉)⁶⁻, tetrahedral SiO₄ units share two oxygen atoms
 Tri alkyl chloro silane on hydrolysis gives R₃SiOH
 SiCl₄ undergoes hydrolysis to gives H₄SiO₄
 (Si₃O₉)⁶⁻ has cyclic structure

8) How many corners of SiO_4 unit are shared in the formation of three dimensional silicates ? [E - 2013]

1) 3

2) 2 3) 4

4) 1

9) Assertion (1): GeF₄ & SiCl₄ act as Lewis bases [M – 2013] Reason (R): Ge and Si have d- orbitals to accept electrons

Both A and R are correct and R is the correct explanation of A.
Both A and R are correct but R is not the correct explanation of A.
3) A is True but R is False
R is True but A is False 10) The catenation tendency of C, Si and Ge is in the order Ge<Si<C. The bond energies (in Kjmol⁻¹) of C-C, Si-Si and Ge-Ge bonds are respectively: [J.M.O.L - 2013]

348, 297, 260

- 2) 297, 348, 260
- 3) 348, 260, 297
- 4) 297, 260, 348

11) The reaction that gives CO₂ as one of the **products** is [EAMCET-2012]

$$13C + 4HNO_3 \xrightarrow{\Delta}$$

3)
$$\operatorname{SnO}_2 + 2C \longrightarrow$$

4)
$$Fe_2O_3 + 3C \xrightarrow{250^\circ,400^\circ C}$$

What is the empirical formula of sheet silicates ? [EAMCET-2011] 12)

1) $(Si_2O_5)_n^{2n-}$ 2) $(SiO_3)_n^{2n-}$

3) $(SiO_3)_n^{n-1}$

4) $(Si_2O_7)_n^{3n-}$

13) Extraction of metal from the ore cassiterite involves? [IIT JEE -2011]
1) Carbon reduction of an oxide ore
2) Self- reduction of a sulphied ore
3) Removal of copper impurity
Removal of iron impurity 14) Producer gas is the mixture of

[**JCECE - 2011**]

1 CO + N₂

2) CO + H₂

3) CO + water vapour

4) N₂ + CH₄

15) Dry ice is .. [UPSEE - 2009]

1) Solid H₂O

2) Solid CO₂

3) Solid N₂O₄

4) Solid NH₃

16) In feldspar and zeolite, Si⁴⁺ ions are replaced by which ions ? [GUJ cet - 2009]

1) Oxide ion

2) Hydroxide ion

3) Aluminium ion

4) Potassium ion

17) What product is formed on heating lead nitrate ?
[OJEEE - 2009]

PbO + NO + O₂
PbO + NO₂+O₂
PbO + NO₂
PbO + NO₂

18) Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is ? [AIEEE-2008]

1) R₂SiCl₂
 2) RSiCl₃
 3) R₂SiCl
 4) R₄Si

20) Hydrolysis of SiCl₄ gives compound x and HCl, on heating to 1000⁰C X looses water and forms Y. Identify X and Y respectively [EAMCET-2008]

1 H₂SiO₄ and SiO₂

2) SiO₂ and Si

3) SiO₂ and SiC

4) H₂SiO₄ and SiC

21) White lead is

[EAMCET-2008]

1) PbCO₃PbO
 2) PbCO₃
 3) Pb(OH)₂ 2PbCO₃
 4) PbSO₄PbO
22) Which of the following oxides is amphoteric in character ? [UPSEE - 2008]

1) SnO₂
 2) SiO₂
 3) CO₂
 4) CaO

23) Roasted tin stone ore after washing with water is known as [Manipal - 2008]

1) Block tin

2) White tin

4) Granulated tin

24) A fibrous mineral which can withstand red hot flames without any damage is [Manipal - 2008]

1) Tale

2) Glass wool

3) Soap stone

4) Asbestos

25) The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence [AIEEE - 2007]

1) PbX₂ < SnX₂ < GeX₂ < SiX₂
 2) GeX₂ < SiX₂ < SnX₂ < PbX₂
 3) SiX₂ < GeX₂ < PbX₂ < SnX₂
 4) SiX₂ < GeX₂ < SnX₂ < PbX₂

26) Which glass has the highest percentage of lead ? [BITSAT - 2007]

1) Soda glass

3) Jena glass

4) Payrex glass

27) Which of the following is used in making printer's ink, shoe polish, black varnish and paint ? [WB JEE - 2007]

1) Lamp black

2) Bone black

3) Carbon black

4) None of these

28) A metal , M forms chlorides in its +2 and +4 oxidation states. Which of the following statements about these chlorides is correct ? [AIEEE - 2006]

1) MCl₂ is more volatile than MCl₄

2) MCl₂ is more soluble in the anhydrous ethanol than MCl₄
3) MCl₂ is more ionic than MCl₄

4) MCl₂ is more easily hydrolysed than MCl₄

29) What is X in the following reaction ? SiCl₄+H₂O → X+HCl

[EAMCET - 2006]

H₄SiO₄
 SiH₄
 (SiOOH)₂

4) Si(ClO₄)₄

30) Which of the following is used for making optical instruments [EAMCET - 2006]

1) SiO₂
 2) Si
 3) SiH₄
 4) SiC

31) Which of the following oxides is amphoteric in character ? [AIEEE - 2005]

CaO
 CO₂
 SiO₂
 SnO₂

32) The number and type of bonds between two carbon atoms in calcium carbide are? [AIEEE - 2005]

1) One sigma, one pi

- 3) Two sigma one pi
- 4) Two sigma, two pi

33) SiO₂ is reacted with sodium carbonate. What is the gas liberated ? [EAMCET - 2005]

1) CO
 2) O₂
 3) CO₂
 4) O₃

34) Which of the following is not correct ? [EAMCET - 2005]
1) SiO₂ is used as acid flux
2) The distance between the layers in graphite is 3.35 × 10⁻⁸ cm
3) SiO₂ reacts with Na₂CO₃ and liberates CO
4) The hybridisation of C in graphite is sp²

35) Formula for agate is

[MHT - 2005]

1) Na₂SiO₃
 2) K₂O.SiO₂.Al₂O₃
 3) SiO₂
 4) CaF₂

36) Which one of the following is used as an acidic flux in metallurgy ? [EAMCET - 2004]

CaO
 SiO₂
 Na₂CO₃
 SO₂

37) Which of the following is an ore of lead ? [BITSAT – 2004]

2) Calamine

3) Malachite

4) Dolomite

38) Sillicon is

[**BITSAT – 2004**]

2) Insulator

3) Conductor

4) None of these

39) Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite .. [AIEEE- 2003]

1) Is a non –crystalline substance

2) Is an allotropic form of diamond

3) Has molecules of variable molecular masses like polymers

4) Has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds.

40) What is the number of free electrons contributed by each carbon atom in graphite ? [EAMCET - 2003]

1) Zero

2) 3
 3) 2
 4) 1

41) Carbon suboxide C₃O₂ has

[EAMCET – 2003]

- 2) Bent structure
- **3)** Trigonal planar structure
- 4) Distorted tetrahedral structure

42) Red lead is an example of

[AMU – 2003]

1) Basic oxide

2) Super oxide

4) Amphoteric

43) When sand is heated with hydrofluric acid and a wet rod is brought in contact with vapours evolving a white deposit is due to ..
1) SiF₄

2) SiF₆ 3/H₄SiO₄

4) None of these

44) Which one of the following is correct set for 'SiO₂'? [EAMCET – 2002]

1) Linear, Acidic

2) Linear, Basic

WTetrahedral, Acidic

4) Angular, Basic

45) The catenation tendency of C, Si and Ge is in the order Ge < Si <C. The Bond energies in (KJ Mol⁻¹) respectively are [EAMCET – 2001]

1) 167, 180, 348	2) 180, 167, 348
3) 348, 167, 180	4 348, 180, 167

46) What is the C-C bond length (in A⁰) in diamond [EAMCET – 2000]

1) 1.54
 2) 3.34
 3) 2.0
 4) 5.2

47) Match the items in column I with its main use listed in Column II : (J.M.O.L – 2016)

Column I	Column II
(A) Silica gel	(i) Transistor
(B) Silicon	(ii) Ion-exchanger
(C) Silicone	(iii) Drying agent
(D) Silicate	(iv) Sealant

48) Assertion : Among the carbon allotropes, diamond is an insulator; whereas, graphite is a good conductor of electricity.
Reason : Hybridization of carbon in diamond and graphite are *sp*³ and *sp*² respectively. (J.MO.L-2016)

1) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion.

- 2) Bothe assertion and reason are correct, explanation for the assertion.
- 3) Both assertion and reason are incorrect.
- 4) Assertion is incorrect statement, but the reason is correct

49) Which of the following statements is not correct?

- 1) The tendency of exhibit +2 oxidation state for Ge, Sn and Pb is in the order Ge<Sn<Pb
- 2) Carbon and silicon mostly exhibit +4 oxidation state in their compounds
- 3) Lead in +4 oxidation state acts as an oxidizing agent
- **4)** Tin in +4 oxidation state acts as a good reducing agent

50) The gas produced by the passage of air over hot coke is

(TS E – 2016)

Produce gas ($CO + N_2$)

Don't Forget to Like / Comment & Share this video

www.Youtube.com/safaltaclass

www.Instagram.com/safaltaclass

