Magnetic Effect of Current

1. A circular current carrying coil has a radius R. The distance from the centre of the coil on the axis where the magnetic induction will be $\frac{1}{2}$ th to its value at the centre of the coil, is

Integration of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction: Image: State of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction: Image: State of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction: Image: State of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction: Image: State of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction: Image: State of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction: Image: State of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distance h from the centre of the coil. This is smaller than the field at the centre by the fraction: Image: State of the plane of a wire of n turns and radius rwhich carries a current i is measured on the axis of the coil at a small distanc

Magnetic Effect of Current

SAFA

3. The magnetic field at the centre of a circular coil of radius r is π times that due to a long straight wire at a distance r from it, for equal currents. Figure here shows three cases : in all cases the circular part has radius r and straight ones are infinitely long. For same current the *B* field at the centre *P* in cases 1, 2, 3 have the ratio [CPMT 1989]

Magnetic Effect of Current

4. Two straight long conductors *AOB* and *COD* are perpendicular to each other and carry currents i_1 and i_2 . The magnitude of the magnetic induction at a point *P* at a distance *a* from the point *O* in a direction perpendicular to the plane *ACBD* is [MP PMT 1994]

SAFA

Magnetic Effect of Current

5. A cell is connected between the points *A* and *C* of a circular conductor *ABCD* of centre *O* with angle $AOC = 60^{\circ} \cdot \text{If } B_1$ and B_2 are the magnitudes of the magnetic fields at *O* due to the currents in *ABC* and *ADC* respectively, the ratio $\frac{B_1}{B_2}$ is

SAFALTA

An Initiative by 3142331R1

SAFALTA.COM

Magnetic Effect of Current

is given by

$$(a) \frac{1}{2}$$
(b) 1

$$(b) \frac{2}{3}$$
(d) 2

$$(a) \frac{2}{3}$$

$$(b) \frac{1}{2}$$

$$(b) \frac{1}{2}$$

$$(b) \frac{1}{2}$$

$$(c) \frac{2}{3}$$

$$($$

SAFALTA

An Initiative by 3PTE 35RE

Magnetic Effect of Current

(a) $i_1 \neq i_2$ and $n_1 = n_2$

(b) $i_1 = i_2$ and $n_1 \neq n_2$

8. A coil having *N* turns is wound tightly in the form of a spiral with inner and outer radii *a* and *b* respectively. When a current I passes through the coil, the magnetic field at the centre is [IIT-JEE (Screening) 2001]

SAFALTA

DM

An Initiative by 3142331R1

passes trough the control at the centre is [IT the (Screening) 201]
(a)
$$\frac{\mu_{N}N}{b}$$
 (b) $\frac{2\mu_{N}N}{a}$ for that there is N
(c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ (c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ to which is N
(c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ (c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ to which is N
(c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ (c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ to which is N
(c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ (c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ to which is N
(c) $\frac{\mu_{N}N}{2(b-a)} = \frac{b}{a}$ (c) $\frac{\mu_{N}N}{2(b-a)} = \frac{\mu_{N}N}{2(b-a)}$ (c) \frac

SAFALTA

P = mV, $kE = \frac{p^2}{2m}$, $P = J_{2mkE}$

IIT-JEE/NEET-PHYSICS

Magnetic Effect of Current

9. H^+, He^+ and O^{++} ions having same kinetic energy pass through a region of space filled with uniform magnetic field *B* directed perpendicular to the velocity of ions. The masses of the ions H^+, He^+ and O^{++} are respectively in the ratio 1:4:16. As a result

 H^+ ions will be deflected most

(b) O^{++} ions will be deflected least

 He^+ and O^{++} ions will suffer same deflection

(d) All ions will suffer the same deflection

Hint
$$Y = \frac{mV}{98} = \frac{\sqrt{2m kE}}{98}$$
 if kE is same.

$$Y = \frac{\sqrt{2m kE}}{98}, \quad Y \propto \frac{\sqrt{m}}{9}$$

$$Y_{H^{+}} \ll \frac{\sqrt{m}}{8} - \frac{\sqrt{m}}{8} \quad \forall_{He^{+}} \ll \frac{\sqrt{m}}{8} \approx 2\frac{\sqrt{m}}{8}$$

$$Y_{0^{++}} \ll \frac{\sqrt{16m}}{28} \approx 22\frac{\sqrt{m}}{8}$$

$$Y_{0^{++}} \ll \frac{\sqrt{16m}}{28} \approx 22\frac{\sqrt{m}}{8}$$

Magnetic Effect of Current

10. An ionized gas contains both positive and negative ions. If it is subjected simultaneously to an electric field along the +x direction and a magnetic field along the +z direction, then

[IIT-JEE (Screening) 2000]

SAFA

- (a) Positive ions deflect towards +y direction and negative ions towards -y direction
- (b) All ions deflect towards +y direction
- All ions deflect towards y direction
 - (d) Positive ions deflect towards -y direction and negative ions towards +y direction

Magnetic Effect of Current

$$\overline{V} = 2 \times 10^{5} \hat{i}, \qquad \overline{V} \times \overline{B}^{2} \\ 2 \times 10^{5} \hat{i} \times (1^{2} + u) - 3 \hat{k}$$

SAFALTA

An Initiative by 3147331RT

11. An electron moves with speed 2×10^5 *m/s* along the positive *x*-direction in the presence of a magnetic induction $B = \hat{i} + 4\hat{j} - 3\hat{k}$ (in *Tesla*.) The magnitude of the force experienced by the electron in Newton's is (charge on the electron = 1.6×10^{-19} C) [EAMCET 2001]

(a)
$$1.18 \times 10^{-13}$$
 (b) 1.28×10^{-13}
 $F = 2$ $X B$
 2×10^{5} $1^{6} \times (1^{6} + 4)^{6} - 3k$
 $F = (8 \times 10^{5} k + 6 \times 10^{5})^{6})e$
 $F = (8 \times 10^{5} k + 6 \times 10^{5})^{6})e$
 $F = (10^{5} \sqrt{8^{2} + 6^{2}} = 10^{6} e$
 $10^{5} \times 1.6 \times 10^{5} b$

Magnetic Effect of Current

12. A particle of mass *m* and charge *q* moves with a constant velocity v along the positive *x* direction. It enters a region containing a uniform magnetic field *B* directed along the negative *z* direction, extending from x = a to x = b. The minimum value of *v* required so that the particle can just enter the region x > b is [IIT-JEE (Screening) 2002]

SAFALTA

An Initiative by 3PTE 35RE

(a) $qb B/m$	(b-a)B/m	X	$ \land $	X	
(c) $qa B/m$ (d)	q(b+a)B/2m				
		X	X	X	
		•	R	_). 1	
R = b - a		У	X	X/	
	a		`		
DALO	10	1	X	X	
K> b-a	~			·	
mV b-a		<u>_</u>	<u>×</u>	X	
9B		X = A		- x = b	
		- 86	-a)	•	

Magnetic Effect of Current

 $V \ni (6-a) 2B$

13. What will be the resultant magnetic field at origin due to four infinite length wires. If each wire produces magnetic field '*B* at origin $2 \frac{1}{2} \frac{1$

(a) 4 B (b) $\sqrt{2} B$ (c) $2\sqrt{2} B$ (d) Zero

 $\frac{P^2B}{D_2B}$

Magnetic Effect of Current

SAFA

14. The ratio of the magnetic field at the centre of a current carrying circular wire and the magnetic field at the centre of a square coil made from the same length of wire will be

-

(a)
$$\frac{\pi^2}{4\sqrt{2}}$$
 (b) $\frac{\pi^2}{8\sqrt{2}}$
(c) $\frac{\pi^2}{2\sqrt{2}}$ (d) $\frac{\pi}{4\sqrt{2}}$

Magnetic Effect of Current

Magnetic Effect of Current

15. Two infinite length wires carries currents 8*A* and 6*A* respectively and placed along *X* and *Y*-axis. Magnetic field at a point

IIT-JEE/NEET-PHYSICS SAFAL **Magnetic Effect of Current** Figure shows the cross-sectional view of the hollow cylindrical conductor with inner radius 'R and outer radius '2R, cylinder 16. carrying uniformly distributed current along it's axis. The magnetic induction at point \mathcal{P} at a distance $\frac{3R}{2}$ from the axis of the $\operatorname{lenclosed} = \frac{1}{\pi(2R)^2 - \pi R^2} \times \left(\frac{\pi \left(\frac{3R}{2}\right)^2 - \pi R^2}{\pi(2R)^2 - \pi R^2} \right)$ cylinder will be (a) Zero (b) $\frac{5\,\mu_0 i}{72\,\pi\,R}$ $\mathcal{P}\pi\left(\frac{3R}{\mathcal{P}}\right) = 3\pi R$ (c) $\frac{7\,\mu_0 i}{18\,\pi\,R}$ pBdl = proienclose $f(y_R = R^2)$ $i_{enclosed} = \frac{1}{\sqrt{5R^2}} \left(\frac{1}{\sqrt{2R^2}} - \frac{1}{\sqrt{R^2}} \right)^2$ $B \exists \pi R = \frac{\mu_0 5^{\circ}}{12}$ $=\frac{1}{2}\left(\frac{9}{4}-1\right)$ B = 5/10 1 36TR. $\int_{enclose}^{e} = \frac{1}{3} \left(\frac{5}{4} \right) = \frac{51}{12}$

Magnetic Effect of Current

SAFAL

Magnetic Effect of Current

18. Two thick wires and two thin wires, all of the same materials and same length form a square in the three different ways P, Q and R as shown in fig with current connection shown, the magnetic field at the centre of the square is zero in cases

SAFALTA

An Initiative by 3142331R1

Magnetic Effect of Current

19. A particle with charge q, moving with a momentum p, enters a uniform magnetic field normally. The magnetic field has magnitude B and is confined to a region of width d, where $d < \frac{p}{Bq}$, The particle is deflected by an angle θ in crossing the

SAFALTA.COM

field	X-P. MV
(a) $\sin \theta = \frac{Bqd}{p}$	R Russe Jaco 0 212 213
(b) $\sin\theta = \frac{p}{Bqd}$	$\begin{array}{c cccc} & & & & & & \\ \hline & & & & & \\ \times & & \times & & \\ & \times & \times & & \\ & \times & \times$
(c) $\sin\theta = \frac{Bp}{qd}$	$q = \frac{x}{x} \frac{x}{x}$
	d28 119-0
(d) $\sin \theta = \frac{pd}{Bq}$	Sinn-d-d
	DINIO- D - D
	R - 2B
	Sing des des
	p = mv

$$Y = \frac{\int 2m 2\Delta V}{9B} = \frac{\int 2x \int 67 x \int 6x \int 0^{27} x \int 6x \int 0^{19} x 500 x \int 0}{\int 6x \int 0^{19} x 0.51} = \frac{1}{5}$$
20. A proton accelerated by a potential difference solver moves though a transverse magnetic field of 0.51 T as shown in figure. The angle θ through which the proton deviates from the initial direction of its motion is
$$(a) \int 5^{6} x \int 6x \int 10^{-19} x 0.51 = \frac{1}{5}$$
(c) $45^{6} x \int 10^{19} x 0.51 = \frac{1}{5}$

$$(a) \int 60^{6} x \int 10^{19} x 0.51 = \frac{1}{5}$$

$$Sin \theta = \frac{1}{R} = \frac{1}{\frac{mV}{9B}}$$

$$Sin \theta = \frac{1}{R} = \frac{1}{\frac{mV}{9B}}$$

$$Sin \theta = \frac{1}{R} = \frac{1}{\frac{mV}{9B}}$$

A

9

SAFALTA.COM

Magnetic Effect of Current

21. AB and CD are long straight conductor, distance d apart, carrying a current I. The magnetic field at the midpoint of BC is

(a) $\frac{-\mu_0 I}{2\pi d} \hat{k}$ (b) $\frac{-\mu_0 I}{\pi d} \hat{k}$ (c) $\frac{-\mu_0 I}{4\pi d} \hat{k}$	B ● / ↑ A	$B_{i} = \frac{\mu_{0}i}{24\pi d} \bigotimes_{i}$ $B_{2} = \frac{\mu_{0}i}{2} \bigotimes_{i}$ $B_{2} = \frac{\mu_{0}i}{24\pi d/2} \bigotimes_{i}$	B = Net	Moi (-Ĥ)
	$\infty \neq 0$			

Magnetic Effect of Current

(d)
$$\frac{-\mu_0 I}{8 \pi d} \hat{k}$$

Magnetic Effect of Current

24. Which of the following graphs shows the variation of magnetic induction *B* with distance *r* from a long wire carrying current [NCERT 1984; MNR 1998; MP PMT 1999]

SAFAI

An Initiative by 3142331161

Magnetic Effect of Current

An Initiative by 3142331161

26. Two long parallel wires are at a distance 2*d* apart. They carry steady equal currents flowing out of the plane of the paper, as shown. The variation of the magnetic field *B* along the line *XX*' is given by [IIT-JEE (Screening) 2000]

SAFAL

An Initiative by 3PHE 3 STREET

Magnetic Effect of Current

Magnetic Effect of Current

Magnetic Effect of Current

24

Two parallel beams of protons and electrons, carrying equal currents are fixed at a separation d. The protons and electrons move in opposite directions. P is a point on a line joining the beams, at a distance x from any one beam. The magnetic field at P is B. If B is plotted against x, which of the following best represents the resulting curve

IIT-JEE/NEET-PHYSICS Magnetic Effect of Current An Initial

A long thin hollow metallic cylinder of radius '*R* has a current *i ampere*. The magnetic induction '*B*-away from the axis at a distance *r* from the axis varies as shown in

Magnetic Effect of Current

26. The correct curve between the magnetic induction (*B*) along the axis of a long solenoid due to current flow *i* in it and distance *x* from one end is

SAFA

Magnetic Effect of Current

27. A particle of charge q and mass m is moving along the x-axis with a velocity v and enters a region of electric field E and magnetic field B as shown in figure below for which figure the net force on the charge may be zero

SAFA

SAFALT

OM

अमर उजाला

Magnetic Effect of Current

SAFALT

M

Magnetic Effect of Current

29. A uniform magnetic field *B* and a uniform electric field *E* act in a common region. An electron is entering this region of space. The correct arrangement for it to escape undeviated is

SAFAL

Magnetic Effect of Current

30. A thin wire of length / is carrying a constant current. The wire is bent to form a circular coil. If radius of the coil, thus formed, is equal to *R* and number of turns in it is equal to *n*, then which of the following graphs represent (*s*) variation of magnetic field induction (*B*) at centre of the coil

SAFALTA

M

Magnetic Effect of Current

SAFALTA

COM

