Upright weak stem – Twiners and Climbers

Twiners

Stem is long, flexible and sensitive. It can coil around an upright support like a rope. Ex: Dolichols lab-lab, Ipomoea, Convolvulus

Fig:- Twiners. 1, Sinistrorse twiner – Convolvulus arvensis (Hiran khuri) 2, dextrorse twiner – Lablab (sem).

Climbers

It bears clinging structures for climbing like adventitious roots, tendrils Ex: Smilax, Ivy, Pea

Underground stems

They lie below the surface of the soil, store food and take part in perennation.

Rhizome

Bulb

- Stem is disc shaped and reduced. ٠
- The bud is surrounded by many concentric leaves. ٠
- The leaf bases are fleshy and edible. ٠
- Disc bears adventitious roots at its base ٠

Fig:- Amorphophallus campanulatus : Corm

Stem Modifications

MODIFICATION OF STEMS: I) UNDERGROUND MODIFICATIONS : Shoot Base of BULB scape TUBER **Fleshy scale** leaf Stem Bulb Tunic Apex Root Disc Axillary Adventitious bud root 57 A. Tunicated bulb of onion B. L.S. of bulb Node

Modification of aerial stem – Phylloclade and Stem tendrils

Phylloclade

 Green flattened or rounded <u>fleshy stem with leaves either modified into</u> spines or feebly developed. Ex: Opuntia, Cocoloba

vlloclade

Spine

Modification of aerial stem – Hooks, Stem thorns

Hooks

Pedicels are modified into stiff curved hooks for helping in climbing called stragglar.
Ex: Artabotrys

Buds

• It is a condensed immature or embryonic shoot having a growing point surrounded by closely placed immature leaves

Leaf and Its types

Part of a leaf (Phyllopodium)

Stipule and its types

• Leaf base contains two small lateral outgrowths called stipule. Leaf with stipules is known as stipulate while the leaf without stipules is termed as exstipulate.

Venation – Reticulate

• The arrangement of veins and veinlets in the lamina of a leaf is called venation.

Venation – Parallel

Types of leaf – Palmately compound leaf

Modifications of leaves – Leaf tendrils

Leaf tendrils

These are thread like sensitive structures, which can coil around a support to help the plant in climbing. Leaf tendril is of following types.

Leaf tendril

Modifications of leaves – Leaflet hook and Phyllode

Leaflet hook

• The terminal leaflets of the compound leaves become transformed into three stiff claw like and curved hooks.

Modifications of leaves –spines, bladders and pitcher

Leaf spines

 The leaf parts become changed into spines in order to protect the plant from grazing animals and excessive transpiration.
Ex: Aloe vera, Solanum xanthocarpum, Opuntia, Asparagus

Leaf bladders

• Some parts of leaf are modified into sac like bladder, which is useful for trapping and digesting animals.

Ex: Utricularia (Insectivorous plant).

Leaf pitcher

• The lamina is modified to form a large pitcher which is useful for catching and digesting

insects. Ex: Nepenthes

Modifications – Succulent, Scaly, Colored and Fleshy leaves

Succulent leaves

• Leaves are fleshy and swollen. They store water or mucilage or food substances.

Ex: Xerophytic plants like Bryophyllum, Aloe vera, Portulaca

Scaly leaves

• These are small, dry whitish or brownish membranous leaves, which do not take part in photosynthesis. Ex: Casuarina, Ruscus

Colored leaves

• In Euphorbia pulcherima, the leaves borne near the Cyathium are brightly colored to attract insects for pollination

