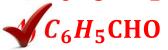
Previous

Previous

PREVIOUS QUESTIONS

Previous

- 1. The synthesis of alkyl fluorides is best accomplished by:
 (JEE MAINS-2015)
 - 1) Free radial fluorination
 - 2) Sandmeyer's reaction
 - 3) Finkelstein reaction



Previous

2. In the following sequance of reactions:

Toluene
$$\xrightarrow{KMno_4}$$
 A $\xrightarrow{SOCl_2}$ B $\xrightarrow{H_2/Pd}$ C

- 1) C_6H_5 COOH
- 2) $C_6H_5 CH_3$
- 3) C_6H_5 CH_2OH

Previous

Solution:

$$C_6H_5CH_3 \xrightarrow{KMnO_4} C_6H_5COOH \xrightarrow{SOCl_2} 1) C_6H_5COCI$$

$$\frac{H_2/\text{Pd}}{BnSO_4}$$
 $C_6H_5\text{CHO}$

Previous

3. The correct order of reactivity of the following iodides in SN_2 reaction

i)
$$H_3CCH_2CH_2CH_2I$$
 ii) $(H_3C)_3CI$

ii)
$$(H_3C)_3$$
CI

iii)
$$H_3CCH_2CHCH_3$$

1)
$$(i) > (ii) > (iii)$$

$$\checkmark$$
) (i) > (iii) > (ii)

3) (ii)
$$>$$
 (i) $>$ (iii)

4)
$$(ii) > (iii) > (i)$$

Previous

4. In a nucleophilic substitution reaction :

 $R - Br + Cl^{-} \xrightarrow{DMF} R - Cl + Br^{-}$, which one of the following undergoes complete inversion of configuration?

[J.M.O.L-2014]

1) $C_6H_5CHC_6H_5Br$

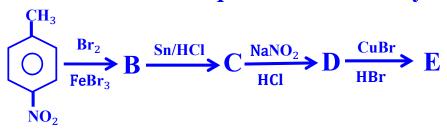
- 3) C₆H₅CHCH₃Br
- 4) $C_6H_5CCH_3C_6H_5Br$

Solution:

Alkyl halide with less no.of Alkyl (or) Aryl groups gives more inversion product

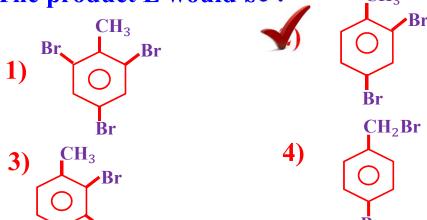
Previous

5. Chlorobenzene reacts with trichloro acetaldehyde in the presence of H_2SO_4


[J.M.O.L-2014]

The major product formed is

HALOGEN DERIVATIVES Previous Solution: H₂SO₄ H - C - C — Cl H **Key: 4** - Cl+H₂O CCl₃ (major product)


Previous

6. In a set of reactions p – nitro toluene yielded a product E

[J.M.O.L-2014]

The product E would be:

Previous

Solution:

Previous

- 7. In SN² reactions, the correct order of reactivity for the following compounds: CH₃Cl, CH₃CH₂Cl, (CH₃)₂CHCl and (CH₃)₃CCl is [JEEMAINS-2014]
 - 1) CH₃Cl> (CH₃)₂ CHCl> CH₃CH₂Cl> (CH₃)₃CCl

$$\checkmark$$
 CH₃Cl> CH₃CH₂Cl> (CH₃)₂ CHCl> (CH₃)₃CCl

- 3) CH₃CH₂Cl> CH₃Cl> (CH₃)₂ CHCl> (CH₃)₃CCl
- 4) (CH₃)₂ CHCl> CH₃CH₂Cl> CH₃Cl> (CH₃)₃CCl

Previous

Solution:

Rate of
$$SN^2 \propto \frac{1}{steric\ hinderance}$$

The order of reactivity towards SN^2 reaction for alkyl halide is

Primary halides > secondary halides > tertiary halides

Key: 2

Previous

- 8. Which one of the following is more readily hydrolysed by SN^1 mechanism? [E-2014]
 - 1) C₆H₅ CH₂Br
 - 2) C₆H₅CH(CH₃)Br
 - 3) $(C_6H_5)_2$ CHBr

$$\sqrt{(C_6H_5)_2C(CH_3)Br}$$

Previous

Solution:

The order of reactivity of halides towards SN^1 reaction : benzyl > allyl > $3^0 > 2^0 > 1^0 >$ methyl

$$\begin{vmatrix} CH_3 & H & H & H \\ | & | & | & | & | \\ C_6H_5 - C - C_6H_5 > C_6H_5 - C - C_6H_5 > C_6H_5 - C - CH_3 > C_6H_5 - C - Br \\ | & | & | & | & | \\ | CH_3 & Br & Br & H \end{vmatrix}$$

Key: 4

Previous

9. Aryl fluoride may be prepared from diazonium chloride using:

1) HBF₄/NaNO₂, Cu, Δ

[JEE MAINS ONLINE-2013]

- \checkmark) HBF₄/ Δ
- 3) CuF/HF
- 4) Cu / HF

Solution:

$$C_6H_5N_2Cl + HBF_4$$
 (fluoroboric acid) $\xrightarrow{\Delta}$ $C_6H_5F + BF_3 + HCl + N_2$

Previous

10. The order of reactivity of the given haloalkanes towards nucleophile is:

[JEE MAINS ONLINE-2013]

- 2) RCl > RBr > RI
- 3) RBr > RCl > RI
- 4) RBr > RI > RCl

Solution:

The order of reactivity of haloalkanes towards a nucleophile depends upon the R – X bond dissociation energy.

Therefore it depends upon the size of the halide ion or C - X bond length

$$R - I > R - Br > R - Cl > R - F$$

Previous

11. In nucleophilic substitution reaction, order of halogens as incoming (attacking) nucleophile is: $I^- > Br^- > Cl^-$

The order of halogens as departing nucleophile should be:

1)
$$Br^- > I^- > Cl^-$$

[JEE MAINS ONLINE-2013]

$$I^- > Br^- > CI^-$$

3)
$$Cl^- > Br^- > l^-$$

4)
$$Cl^- > I^- > Br^-$$

Solution:

Bigger the size and lower the electronegativity easier the nucleophilic substitution.

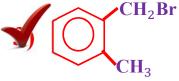
Therefore the order of leaving group: $I^- > Br^- > Cl^-$

Previous

- 12. Heating chloroform with aqueous sodium hydroxide solution forms:
 - 1) Sodium acetate

[E-2013]

- 2) Sodium oxalate
- Sodium formate
 - 4) Chloral


Previous

CH₂Br

13. Compound (A), C₈H₉Br , gives a white precipitate when warmed with alcoholic AgNO₃ . Oxidation of (A) gives an acid (B), C₈H₆O₄.
(B) easily forms anhydride on heating, Identify the compound (A).

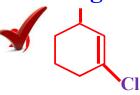
[JEEMAINS-2013]

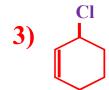
$$CH_3$$

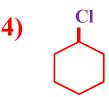
Previous

Solution:

$$\begin{array}{c|c} CH_2Br \\ \hline \\ (A) \\ CH_3 \\ \hline \\ (B) \\ \hline \end{array} \begin{array}{c} CH_2^+ \\ + AgBr \downarrow \\ \text{(Pale yellow)} \\ \hline \\ -H_20 \\ \hline \end{array}$$


Key: 3


Previous


14. Which one of the following is most stable?

[J.M.O.L-2013]

Solution:

allylic carbon attachment due to stable carbocation formation.

Previous

15. For the compounds CH₃Cl,CH₃Br, CH₃l and CH₃F, the correct order of increasing C-X bond length is : [2012]

- 2) S
- 3) Cl
- 4) C and H

Solution:

 $CH_3F < CH_3Cl < CH_3Br < CH_3I$

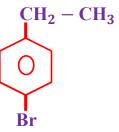
Previous

16. A major component of Borsch reagent is obtained by reacting hydrazine hydrate with which of the following? [2012]

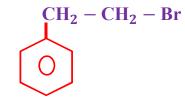
$$\mathbf{2)} \quad \mathbf{O_2N} \quad \mathbf{O_2} \quad \mathbf{NO_2}$$

3) \bigcap_{O} NO₂

Previous

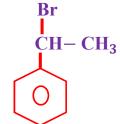

Solution:

Borsch reagent is 2, 4- DNP (2, 4- dinitrophenylhydrazine)


Previous

17. The product of the reaction b/w ethyl benzene and N-bromo succinimide is [2012]




2)

3)

4)

Previous

Solution:

NBS is a brominating agent that replices H atom in benzylic or allylic position

Key: 4

Previous

18.
$$C_2H_5Br \xrightarrow{AgCN} X \xrightarrow{Reduction} Y$$
, Here Y is

[2011]

- 1) n-propyl amine
- 2) Ethyl amine
- 3) Isopropyl amine

Previous

Solution:

$$C_2H_5Br + AgCN \rightarrow C_2H_5NC + AgBr$$

$$\begin{array}{c|c}
C_2H_5NC & \xrightarrow{\text{Reduction}} & C_2H_5NHCH_3 \\
\downarrow & & \downarrow \\
& \text{Ethyl methyl amine}
\end{array}$$

Key: 4

Previous

19. Which of the following statements is wrong?

[2011]

The reaction methyl magnesium bromide with acetone gives butanol -2

- 2) Alkyl halides follow the following reactivity sequences on reaction with alkenes: R-I > R-Br > R-Cl > R-F
- 3) C₂H₄Cl₂ may exist in two isomeric forms
- 4) Erhyl chloride on reduction with Zn-Cu couple and alcohol gives ethane.

Previous

Solution:

Acetone on action of methyl magnesium bromide followed by hydrolysis gives 30 butyl alcohol.

$$CH_{3} \xrightarrow{C} CH_{3} + CH_{3}MgBr \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{H_{2}O} CH_{3} \xrightarrow{C} CH_{3}$$

Key : 1

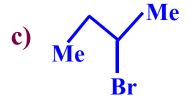
Previous

- 20. The conversion of benzene diazonium chloride to bromobenzene can be accomplished by: [2011]
 - **Gattermann reaction**
 - 2) Azo coupling reaction
 - 3) Fiedal crafts reaction
 - 4) Remer-Tiemer reaction

Solution:

Previous

- 21. Beilstein test is used for estimation of which one of following elements [2011]
 - 1) CH₃F, CH₃Cl, CH₃Br, CH₃I
 - 2) CH₃F, CH₃Br, CH₃Cl, CH₃I


4) CH₃Cl, CH₃Br, CH₃F, CH₃I

Previous

22. Consider the following bromides:

[A-2010]

The correct order of SN^1 reactivity is

2)
$$B > A > C$$

3)
$$C > B > A$$

$$4) A > B > C$$

Solution:

Order of reactivity of various Alkyl halides towards SN¹ reaction is

Benzyl halide > Allyl halide > Tertiary alkyl halide > Secondary alkyl halide > Primary alkyl halide

Previous

EtOH/H₂O

- 23. Consider the following reaction, $C_2H_5Cl + AgCN \xrightarrow{'} \underline{X}$ (major). Which one of the following statements is true for \underline{X} [E-2009]
 - I) It gives propionic acid on hydrolysis
 - II) It has an ester functional group
 - III) It has a nitrogen linked to ethyl carbon
 - IV) It has a cyanide group

1) IV

3) II

4) I

Previous

24.
$$C_2H_5OH + SOCl_2 \xrightarrow{Pyridine} x + y + z$$

In this reaction x, y and z respectively are

[E-2008]

1)
$$C_2H_4Cl_2$$
, SO_2 , HCl

$$\sqrt{C_2H_5Cl}$$
, SO_2 , HCl

4)
$$C_2H_4$$
, SO_2 , Cl_2

$$C_2H_5OH + SOCl_2 \xrightarrow{\text{pyridine}} C_2H_5Cl + SO_2 \uparrow + HCl \uparrow$$

$$X \rightarrow C_2H_5Cl$$
 $y \rightarrow SO_2$ $Z \rightarrow HCl$

Previous

25. The organic chloro compound, which shows complete sterochemical inversion during a SN^2 reaction, is [A-2008]

1)
$$(C_2H_5)_2$$
 CHCl

2)
$$(CH_3)_3 CCl$$

Previous

Solution:

Nucleophilic substitution bimolecular (SN²) preffers less steerically hindered site to attack.

Lesser the steric hindrance better the SN^2 reaction. So ease of reaction is $1^0 > 2^0 > 3^0$.

Key: 4

Previous

26. Identify 'B' in the following reaction

$$CH_2 = CH_2 + HCl \xrightarrow{anhydrous \ AlCl_3} A \xrightarrow{2H} \underbrace{A \xrightarrow{2H}}_{Zn-Cu \ in \ C_2H_5OH} B + HCl$$

[E-2007]

- $3) C_2H_5Cl$
- 4) C₂H₅OH

Previous

Solution:

$$CH_2 = CH_2 + HCl \xrightarrow{\text{anhydrous}} CH_3CH_2Cl$$

$$(A)$$

$$CH_3CH_2Cl + 2[H] \xrightarrow{\text{Zn-Cu}} CH_3 - CH_3 + HCl$$

$$(B)$$

 $B \rightarrow C_2 H_6$

Key: 2

Previous

27.
$$C_2H_5Cl \xrightarrow{dry Ag_2O} A \xrightarrow{360^0} B \xrightarrow{S_2Cl_2} C$$

In the above sequence of reactions identify 'C'

[E-2007]

- 1) Chloretone
- 2) Chloropicrin

4) Lewisite gas

Previous

Solution:

$$C_2H_5Cl + Ag - O - Ag + Cl - C_2H_5 \rightarrow C_2H_5 - O - C_2H_5 + 2AgCl$$
(A)

$$C_2H_5 - O - C_2H_5 \xrightarrow{Al_2O_3} 2CH_2 = CH_2 + H_2O$$

$$CH_2 = CH_2 + S_2Cl_2 + CH_2 = CH_2$$

 $\rightarrow Cl - CH_2 - CH_2 - S - CH_2 - CH_2 - Cl + S$

Key : 3

↓ Mustard gas

Previous

28. Ethyl Chloride on reduction with LiAlH₄ gives compound 'X' as important product, 'X' on chlorination with one mole of Cl2 in the presence of light at ordinary temperature gives Y, what is 'Y'?

[E-2007]

- $1) C_2H_6$

4) C₂H₅ OH

Previous

Solution:

$$C_2H_5Cl + [H] \xrightarrow{Al_2O_3} C_2H_6 + HCl$$

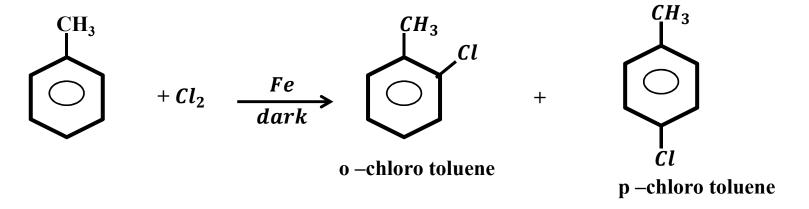
$$(x)$$

$$C_2H_6 + Cl_2 \xrightarrow{sun \, light} C_2H_5Cl + HCl$$
 (y)

$$Y \rightarrow C_2 H_5 C l$$

Key: 3

Previous


29. On treatment of toulene with Cl₂ in presence of Fe, dark the product formed is [A-2007]

- 2) benzyl chloride
- 3) m-chloro toulene
- 4) only p-chloro toulene

Previous

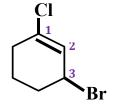
Solution:

Key : 1

Previous

30. The IUPAC name of the compound shown below is

[A-2006]


- 1) 2-bromo-6-chloro cyclohexene -1-ene
- 2) 6-bromo-2-chloro cyclohexene

4) 1-bromo-3-chloro cyclohexene

Previous

Solution:

3-bromo-1- chloro cyclohexene

Key: 3

Previous

- 31. Which of the following can give a Grignard reagent when reacted with magnesium in dry ether? **[E-2006]**

Solution:

Alkyl halide reacts with Mg metal to form Grignard reagent

$$C_2H_5Cl + Mg \rightarrow C_2H_5MgCl$$

Previous

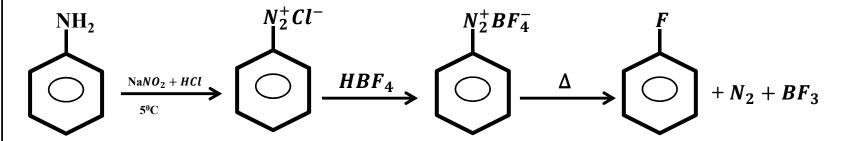
- 32. Which of the following reagents when heated with ethyl chloride forms ethylene [E-2006]
 - 1) Aqueous KOH

2) Zn/HCl

4) HI

$$C_2H_5Cl + alc\ KOH \rightarrow C_2H_4 + KCl + H_2O$$
 \downarrow
Ethylene

Previous


33. Fluorobenzene (C_6H_5 F) can be synthesized in the laboratory.

[A-2006]

- 1) by heating phenol with HF and KF
- from aniline by diazotisation followed by heating the diazonium salt with HBF₄
 - 3) by direct fluorination of benzene with F_2 gas
 - 4) by reacting bromobenzene with NaF solution

Previous

Solution:

Key: 2

Previous

34. $CH_3Br + N\bar{u} \rightarrow CH_3 - Nu + B\bar{r}$ the decreasing order of the rate of above reaction with nucleophiles $(N\bar{u})$ A to D is

$$[\mathbf{N}\overline{\mathbf{u}} = (\mathbf{A})\mathbf{P}\mathbf{h}\mathbf{O}^{\mathsf{-}}, (\mathbf{B})\mathbf{C}\mathbf{H}_{3}\mathbf{C}\mathbf{O}\mathbf{O}^{\mathsf{-}}, (\mathbf{C})\mathbf{H}\mathbf{O}^{\mathsf{-}}, (\mathbf{D})\mathbf{C}\mathbf{H}_{3}\mathbf{O}^{\mathsf{-}}]$$

[A-2006]

$$\sqrt{D} > C > A > B$$

2)
$$D > C > B > A$$

3)
$$A > B > C > D$$

4)
$$B > D > C > A$$

Previous

Solution:

Nucleophilicity order is

$$CH_3 \longrightarrow \overline{O} > H \longrightarrow \overline{O} > O$$

-ve

Charge stable

Charge stable

Charge stable

Key : 1

Previous

35. Tertiary alkyl halides are particularly substituted by SN^2 mechanism because of [E-2005]

2) Inductive effect

3) Instability

4) Insolubility

Previous

36. Identify A and B in the following reactions:

[E-2005]

$$A \xrightarrow{aq.NaOH/\Delta} C_2H_5OH \xleftarrow{AgOH} B$$

1)
$$A = C_2H_2$$
, $B = C_2H_6$

1)
$$A = C_2H_2$$
, $B = C_2H_6$ 2) $A = C_2H_5Cl$, $B = C_2H_4$

3)
$$A = C_2H_4$$
, $B = C_2H_5Cl$

$$C_2H_5Cl \xrightarrow{aq NaOH} C_2H_5OH + NaCl$$

$$C_2H_5Cl \xrightarrow{AgOH} C_2H_5OH + AgCl$$

Previous

37. What is the molecular formula of the product formed when Benzene is reacted with ethyl chloride in presence of anhydrous aluminium chloride. [E-2004]

2) C_6H_6

3) C_8H_8 4) C_6H_5Cl

$$C_{6}H_{6} + C_{2}H_{5}Cl \xrightarrow{\text{anhydrous}} C_{6}H_{5} - C_{2}H_{5} + HCl$$

$$C_{8}H_{10}$$

$$\downarrow$$
Ethyl benzene

Previous

38. Identify A and B in the following reaction

[E-2004]

$$C_2H_5Cl \xrightarrow{A} C_2H_5OH \xleftarrow{B} C_2H_5-Cl$$

$$A = aq.KOH, B = AgOH$$

2)
$$A = alc.KOH$$
, $B = aq.NaOH$

3)
$$A = aq.NaOH, B = AgNO_2$$

4)
$$A = AgNO_2$$
, $B = KNO_2$

Previous

Solution:

$$C_2H_5Cl + aq KOH \rightarrow C_2H_5OH + KCl$$

$$C_2H_5Cl + AgOH \rightarrow C_2H_5OH + AgCl$$

$$C_2H_5OH \xrightarrow{'B'} C_2H_5 - Cl$$

Key : 1

Previous

39. The reagent used for converting benzene to ethyl benzene is.

[M-2004]

- 2) C₂H₅Cl, aq AlCl₃
- 3) C₂H₅OH, anhydrous AlCl₃
- 4) C₂H₅Cl, SOCl₂

Previous

Solution:

$$\begin{array}{c}
CH_2CH_3 \\
+ CH_3CH_2Cl & \xrightarrow{\text{anhydrous}} & \downarrow \\
\hline
AlCl_3 & \\
\hline
Ethyl benzene
\end{array}$$

Key: 1

Previous

- 40. On mixing ethyl acetate with aqueous NaOH the products formed [A-2004]
 - 1) $CH_3COOC_2H_5 + NaCl$
 - 2) $CH_3COCl + C_2H_5OH + NaOH$

4) $CH_3Cl + C_2H_5COONa$

$$H_3CCOOC_2H_5 + NaOH(aq) \rightarrow H_3CCOONa + C_2H_5OH$$

Previous

- 41. Bottles containing C₆H₅I and C₆H₅CH₂I lost their original labels. They were labelled A and B for testing A and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was made acidic with dilute HNO₃ and some AgNO₃ solution added. Solution B gave a yellow precipitate. Which one of the following statements is true for the experiment?
 - 1) Addition of HNO₃ was unnecessary

[A-2003]

- 3) A was C₆H₅CH₂I
- 4) B was C₆H₅I

Previous

42. Heating chloroethane with ---- yields a product containing isocyanide group. [M-2002]

- **2) KCN**
- **3) HCN**

4) HNO₃

$$C_2H_5Cl + AgCN \rightarrow C_2H_5NC + AgCl$$

$$\downarrow$$
Ethyl Iso cyanide

Previous

43. What is X in the following reaction

[M-2001]

$$C_6H_5Cl + X \rightarrow C_6H_5OH + KCl$$

1) KHCO₃

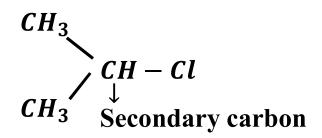
2) alc. KOH

4) K₂CO₃

Solution:

$$C_2H_5Cl + aq\ KOH \rightarrow C_2H_5OH + KCl$$

If alkyl halide reacts with aq.KOH Nucleophilic substitution reaction takes place


If alkyl halide reacts with alc.KOH Elimination reaction takes place

Previous

44. Which one of the following is a secondary alkyl halide

Solution:

If halogen is attached to 2^0 carbon is called secondary alkyl halide

Previous

45. Chloro ethane reacts with X to form diethyl ether. What is X?

[E-2001]

1) NaOH

2) H₂SO₄

4) Na₂S₂O₃

$$C_2H_5Cl + NaOC_2H_5 \rightarrow C_2H_5 - O - C_2H_5 + NaCl$$

$$X \rightarrow C_2H_5ONa$$

Don't Forget to Like / Comment & Share this video

Previous

www.Youtube.com/safaltaclass

www.Facebook.com/safaltaclass

www.Instagram.com/safaltaclass

