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_AStandard equation of an ellipse referred to its principal axes along the co-ordinate axes is |

Wherea >b & b*=a*1-¢*) = a’-—

Where e = eccentricity (0 <e < 1).
FOCI:S=(ae 0) & S'=(-ae 0).

EQUATIONS OF DIRECTRICES :

x=2 &x=_2
< e
VERTICES:

A'=(-a.0) & A=(a.0).

Ellipse

b2=a’e’
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MAJORAXIS :

The line segment A’ A in which the foci

S’ & S lie 1s of length 2a & 1s called the major axis (a > b) of the ellipse. Point of intersection of major
axis with directrix is called the foot of the directrix (z).

MINOR AXIS :

The y—axis mtersects the ellipse in the points B’ = (0. —b) & B=(0.b). The line segment B'B of length
2b (b < a) 1s called the Minor Axis of the ellipse.

PRINCIPALAXIS :
The major & minor axis together are called Principal Axis of the ellipse.
CENTRE: ~
The point which bisects every chord of the conic drawn through it is called the centre of the conic.
3 o2
C =(0. 0) the origin is the centre of the ellipse )‘_’ + y) =1.
a~ b°
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FOCAL CHORD : A chord which passes through a focus is called a focal chord.

DOUBLE ORDINATE :
A chord perpendicular to the major axis is called a double ordinate.
LATUSRECTUM =

The focal chord perpendicular to the major axis is called the latus rectum. Length of latus rectum

. . %2
minor axis)” : S :
(LL") = ( ) =2a(l-¢e?)=2e (distance from focus to the corresponding directrix)

_ major axis
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FOCAL CHORD : A chord which passes through a focus is called a focal chord.

DOUBLE ORDINATE :
A chord perpendicular to the major axis is called a double ordinate.
LATUSRECTUM:

The focal chord perpendicular to the major axis is called the latus rectum. Length of latus rectum

2b -
(LL") O (minor aws) = 2a(1-e*)=2e (distance from focus to the corresponding directrix)
a

major axis
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NOTE:
(i) The sum of the focal distances of any poi point on the ellipse is equal to the major Axis. Hence distance of
focus from the extremity v of a minor axis is ‘equal to semi major axis. i.e. BS = CA.
2 2

(ii) If the equation of'the ellipse is given as ﬁ + Y_ﬁ —1 & nothing 1s mentioned- then the rule is to assume
a? b“

P m\y
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9"‘J __+3_,/)3L+3_ -l/

that a > b.
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I@l The equation of the circle passing through the foci of the ellipse :—6+? =1 and having centre at (0, 3) is:
‘h —_—

[JEE

(Main] ]

\,(/{)x2+y2-6y—7:0(2)x2+y2—6y+7:0(3)x2+y2—6y-5=0(4)x2+y2—6y+5:0

/ —1-1*&2 31

.

oz

efll‘_hz se>-1-1

B 16

04, b=3 Hall
B= (- e ““? %9
b S 1-e?

S (17,0)
t Lo/ 3)

5L

spiwd= G5 = 749 =4

(e~ G- 4%

>(L+;_f+4-f6g = 14

Aty l-—,gy-q =D

~

W




= SAFALTA cow

Problems S
l@l If LR of an ellipse is half of its minor axis, then its eccentricity is -
— ® = o o 2
2 3 \}) 2 3
“ 2
/ o LR= 2 b =0(1-¢) \
2 \ ) z—a,2'=— bl
Lo/b) L’Mf%’h t{ mindL axiS = 2b o2
w a‘ MU' OGS =b e?_; |_.‘L,2
2 B
3}3 ) ’B :,) _.h-:-l— =i |
o~ g B
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ELLIPSE AT A GLANCE

Auxiliary Circle x2 +y2 =32

e o e e
- ——

e y "
' . . v N\,
D, /,/ Minor axl;s ; éa cosd, b sinO)b \\\ D,
. £ _ B0, D) pxy) G52 N\ M,
5
T 2 Latus R,a‘clum /.\\;& a ' Latu§\3cctum
0 Y, \ " : :
nlz oY Foot of directrix
5 Vertex = / -
< 4ip I . .
T N,|(a,0)A, (—,0) &,/ |O(centre) NI Major axis
S (ae0) & )
s \ & I)ogble/'
\ ordinate
l \\ 2 e
v\\\\ B2 (0, _b)
gl e oo a
[ < Major Axis = 2a ¢

-~
b -
e SRR s




4 SAFALTA com

An Initiative by ISR 35T

ﬁ#\\\wﬁ()u
ELLIPSE AT A GLANCE # *’x SN
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POSITION OFA POINT w..t. AN ELLIPSE :

The point P(x, y,) lies ouEi/de. inside or on the ellipse according as ‘> <or=0.
" é‘l, v)
s 5, 30 eutside \55 ”—(;‘*iﬁi“-li
G ) Pusalie Ellipse :

Sllo on the purnt

FTS 1.,;'?5:_
iy, *
S\<o0 iy, | B T
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AUXILIARY CIRCLE /ECCENTRICANGLE :
A circle described on major axis as diameter 1s

called the auxiliary circle.

Let Q be a point on the auxiliary circle x>+ y*>=a’
such that QP produced is perpendicular to the x-axis
then P & Q are called as the CORRESPONDING POINTS
on the ellipse & the auxiliary circle respectively ‘6° is
called the EccentrIC ANGLE of the point P on the ellipse
0<6<2m).

-
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PARAMETRIC REPRESENTATION:

2 2
: - : X =
The equations x =a cos 6 & y=b sin 6 together represent the ellipse —+ l};—, =1.
aZ b2
Where 6 1s a parameter. Note that if P(6) = (a cos 6, b sin 6) is on the ellipse then :
Q(6)=(acos 6, asin 6) 1s on the auxiliary circle.
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If the distance of a point on the ellipse L A from the centre is 2, then the eccentric angle is-

(A) =n/3

Problems
6 7.4 —:
\Br w4 T © n/6

(D) m/2

~

ol o.fﬂsa\’yne) (F=2
f OLGD&-O + L2§ \'nz@

o

6C® 42500 G
blod+2 =4
Ll e =2
loo= + /

Cmf9=-l¢5

@;2/4.
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LINEAND ANELLIPSE :

The line y=mx + ¢ meets the ellipse —+ l};—z =1 intwo points real. coincident or imaginary according
—_— a '
as ¢2is <=or > a’m? + b% — c* < plrtre’ (guad) ¢t omeld ( riefhe,)
x* ¥ €= dwisd_Gorgd)] N
Hence y=mx + ¢ is tangent to the ellipse — + b—,_, = ffl=am2+b2. Cz 2 {am+b
aZ b2

The equatiou to the chord of the ellipse joining two points with eccentric angles o & B 1s given by

—cos B y a+p cosa_ﬁ- / s
a 2 b 2 2 seceard
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The line y=mx + c meets the ellipse —+ Z—Z =1 intwo ponts real, comncident or imaginary according
— a '
as ¢2is <=or>a’m? + b — c* < plmtrb’ (geant) ¢t Ml ( riefhe)
¢ g [T me ]
Hence y =mx + ¢ 1s tangent to the ellipse —+ b_ I T2 =a2m2+b2 Lz 2 {am+b
a’

The equation to the chord of the ellipse joining two points with eccentric angles o & B 1s given by

X B Y 2tP aBL/ g
//acosz y Ty Ty /

o Al bl

L

2 CC"'_E'DBJ b.c]'nf)

seeard
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=85 Plu, 4,) T:’O W
@ : ; My ﬁ =
£ ~ =1 [is tangent to the ellipse at (X/I_ ) 7Y S Y= Xy ¥y, k /

2 X e Ll |
C= 0w =ik
th 9 =2 [ﬂm”fbl
v(ii) o Y=mX £ [a’m? + b?) is tangent to the ellipse for all values of m.

Note that there are two tangents to the ellipse having the same m. i.e. there are two tangents parallel to
any given direction.

: 2y —3 (060, 650) X glad |, pord
- Xcos® ysm6 : ('L”) ( : ; ‘ _ g +‘d,[f__. 2!
\(»l) o a4 3 =1 is tangent to the ellipse at the point (acos 6.bsin 6).  ¢* k*

a

(iv)  The eccentric angles of point of contact of two parallel tangents differ by n. Conversely if the difference
between the eccentric angles of two points is p then the tangents at these points are parallel.

aj'd'z!&(fr\‘j'

o . . | cosZE  sin
(§%) Point of intersection of the tangents at the point o &  isja——2—

e TSk cos LR cosGE

( M/.bgl'hy
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Iﬂ For what value of A does the line y = x + A touches the ellipse 9x* + 1 - 144.
* — —_—
Y= e+ ECN
m=| c=A le ¢

/ ; a=4 b=3 \

= b
A= haigvr+ 9
N2
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NORMALS :

Equation of the normal at (x, y,) is

Equation of the normal at the point (acos 6- bsin 6) 1s : ax-sec 6 — by cosec 6 =(a> - b?).

/—

2 2
. . . i a“—b )m _ P % SR
Equation of a normal in terms of its slope 'm'i§ y=mx — ( - 7) —. Y= mx ("__,_"2"
—+hm= pteatmS

b6

il
QL )/ » —Lf =
{ e
2X +2Y 0y =D
Nerad & B
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Equation of the normal at (x, y,) is

Equation of the normal at the point (acos 6-bsin 6) 1s : ax-sec 6 — by cosec 6 =(a>-b?).
/—

. . . i (a’-bHm g = (3% @m
Equation of a normal in terms of its slope 'm' 1%. 4=m i
t=howe oimS

pEi
_ ?(iulél)\’/ Zl _‘f; S
6 Joyk
2 +2Y .04 =D
N‘wﬂ-‘- e B dat

Lol My My= 923‘_1 v
AaL _'g'/'_bz. OZU’ L’ZJ()
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Chord of contact. pair of tangents. chord with a given middle point. are to be interpreted as

they are in parabola.

‘ch\/\a‘)

Eqr o dand  conked PE =

_?@13_(39+L_3_'§1 =
&
b
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