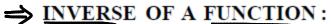
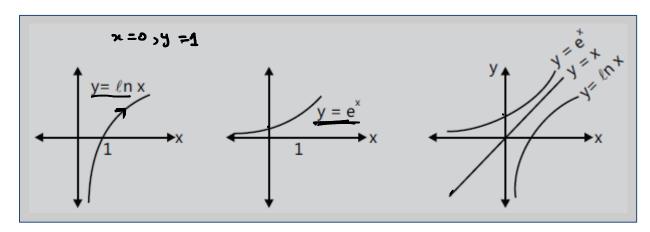
COMPOSITE FUNCTIONS

Let $f: A \to B \& g: B \to C$ be two functions. Then the function $gof: A \to C$ defined by $(gof)(x) = g(f(x)) \forall x \in A$ is called the composite of the two functions f & g.


(d) $\sqrt{2} - \sqrt{x}$

Diagramatically
$$\xrightarrow{X} f \xrightarrow{f(x)} g \xrightarrow{g(f(x))}$$
.

If
$$f(x) = \sqrt{x}$$
 and $g(x) = \sqrt{2-x}$, the composition $f \circ g(x)$ is


(a) $\sqrt{(2-2x)}$ (b) $(2-x)^{\frac{1}{4}}$ (c) $x^{\frac{1}{4}}$

$$f(g(x)) = f(\sqrt{2-x})$$

= $\sqrt{2-x}$
= $(2-x)^{1/4}$

Let $f: A \to B$ be a <u>one-one & onto function</u> then their exists a unique function $g: B \to A$ such that $f(x) = y \Leftrightarrow g(y) = x$, $\forall x \in A \& y \in B$. Then g is said to be inverse of f.

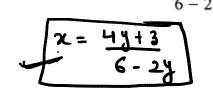
$$f(J(x)) = x$$

$$f(f^{-1}(x)) = x$$

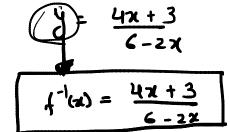
$$f^{-1}(\widehat{f(x)}) = x$$

- Note that the graphs of f & g are the mirror images of each other in the line y=x.
- If $f: A \to B$ is a bijection & $g: B \to A$ is the inverse of f, then $f \circ g = I_B$ and $g \circ f = I_A$, where $I_A & I_B$ are identity functions on the sets A & B respectively.

INVERSE OF A FUNCTION:

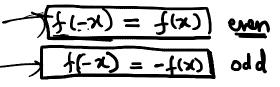

Let $f: A \to B$ be a one-one & onto function, then their exists a unique function $g: B \to A$ such that $f(x) = y \Leftrightarrow g(y) = x$, $\forall x \in A \& y \in B$. Then g is said to be inverse of f.

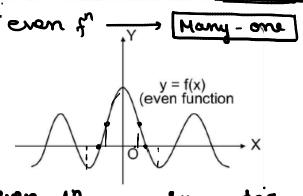
- The inverse of a bijection is also a bijection.
- \longrightarrow If <u>f</u> & g are two bijections f: A \rightarrow B, g: B \rightarrow C then the inverse of gof exists and $(gof)^{-1} = f^{-1} o g^{-1}$.


If
$$f(x) = \frac{6x - 3}{2x + 4}$$
, then $f^{-1}(x)$ is Range (

(a)
$$\frac{2x+4}{6x-3}$$

(a)
$$\frac{2x+4}{6x-3}$$
 (b) $\frac{6x-4}{2x+3}$


Does not exist



→ ODD & EVEN FUNCTIONS :

If f(-x) = f(x) for all x in the domain of 'f' then f is said to be an even function.

If f(-x) = -f(x) for all x in the domain of 'f' then f is said to be an odd function.

y-aris.

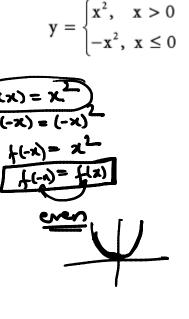
y-aris.

y-aris.

y-aris.

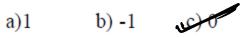
delighter about

If
$$f(x) = \frac{x+2}{x-3}$$
; then $f(x)$ is $f(-x) = \frac{-x+2}{-x-3}$


(a) even function

(c) neither even function nor odd function

y = f(x) (odd function) $f(x) = x^{3}$ $f(-x) = (-x)^{3}$

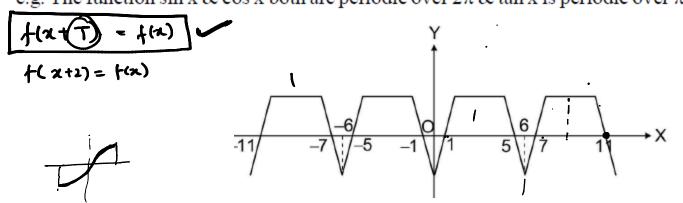

(d) periodic function

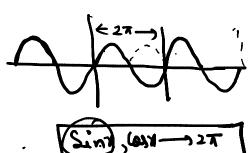
+(-x) = - +(x)

Problem

If f(x) is a function that is odd and even simultaneously, then f(3)-f(2) is

$$f(x) = 2$$


$$f(-x) = 2$$


$$f(-x) = f(x)$$
even

A function f(x) is called periodic if there exists a positive number $\underline{T(T \ge 0)}$ called the period of the function such that $\underline{f(x+T)} = \underline{f(x)}$, for all values of x within the domain of x.

e.g. The function $\sin x \& \cos x$ both are periodic over $2\pi \& \tan x$ is periodic over π .

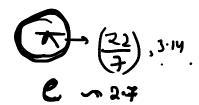
- (a) <u>Inverse</u> of a periodic function does not exist (Morry enc)
- (b) Every constant function is always periodic, with no fundamental period.
- (c) If f(x) has a period T & g(x) also has a period T then it does not mean that f(x)+g(x) must have a period T. e.g. $f(x)=|\sin x|+|\cos x|$.
- (d) if f(x) has a period T then f(ax + b) has a period T a (a > 0).

= f(x)

T1 T2

Problem

9


If $f(x) = \cos x + \{x\}$ where $\{.\}$ is fractional part function then the period of f(x) is

a) 2π

b) 1

c) $\frac{\pi}{2}$

d) Does not exist

Sinx
$$\longrightarrow$$
 $2\overline{\Lambda}$

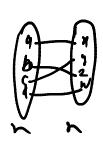
Sin 243 \longrightarrow $2\overline{\Lambda}$
 $2\sin x + 3 \longrightarrow 2\overline{\Lambda}$
 $2\sin x + 3 \longrightarrow 2\overline{\Lambda}$
 $2\sin x + 3 \longrightarrow 2\overline{\Lambda}$
 $2\sin x + 3 \longrightarrow 2\overline{\Lambda}$

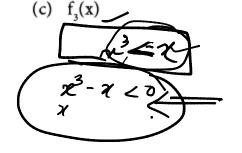
Problem

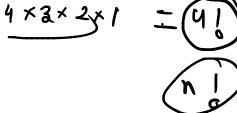
The non-periodic function from among the following is

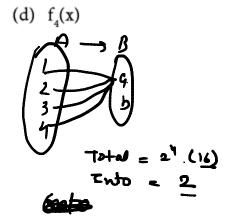
$$f_1(x) = x - [x];$$

$$f_2(x) = \log(2 + \cos 2x),$$


$$f_3(x) = \tan (3x + 2);$$


$$f_{A}(x) = x^{2} - x + \tan x$$


(a)
$$f_1(x)$$


(b)
$$f_{2}(x)$$

Ordo = 16-2