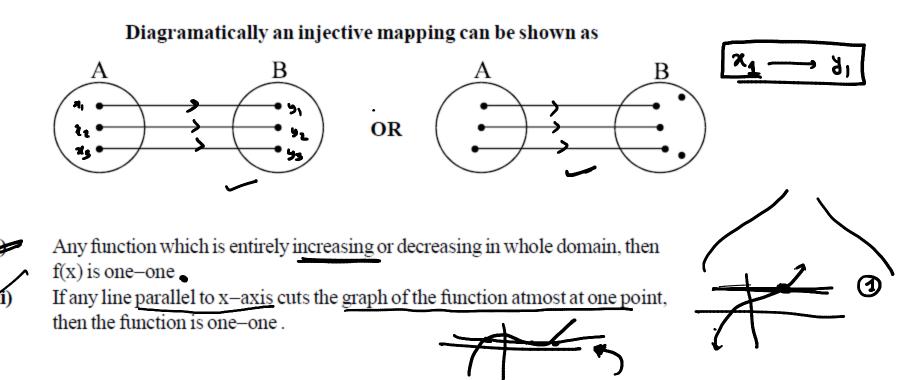
Functions L-2

By Ankush Garg(B.Tech, IIT Jodhpur)

CLASSIFICATION OF FUNCTIONS:

-One-One Function (Injective mapping) :

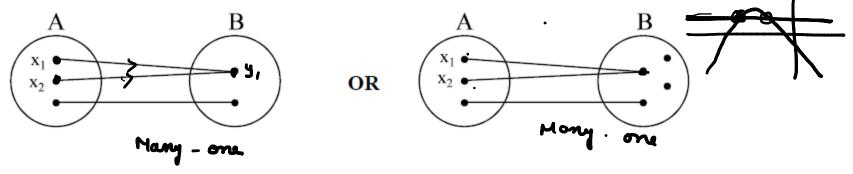
A function f: $A \rightarrow B$ is said to be a <u>one-one function</u> or <u>injective mapping</u> if different elements of A have different f images in B.



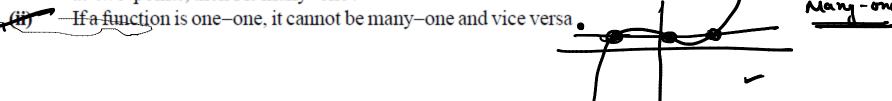
Many–one function :

A function $f: A \rightarrow B$ is said to be a many one function if two or more elements of A have the same fimage in B.

Diagramatically a many one mapping can be shown as



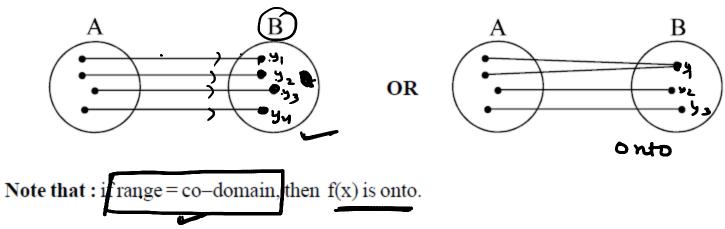
(i) Any continuous function which has atleast one local maximum or local minimum, then f(x) is many-one. In other words, if a line parallel to x-axis cuts the graph of the function atleast at two points, then f is many-one.



<u>Onto function (Surjective mapping)</u> :

If the function $f: A \rightarrow B$ is such that each element in B (co-domain) is the fimage of at least one element in A, then we say that f is a function of A 'onto' B.

Diagramatically surjective mapping can be shown as



Into function: (Range ≠ Co - Domain)

If $f: A \rightarrow B$ is such that there exists at least one element in co-domain which is not the image of any element in domain, then f(x) is into.

A Into B A Into B A Into B OR A Into B A Into B

Note that : If a function is onto, it cannot be into and vice versa . A polynomial of degree even will always be into.

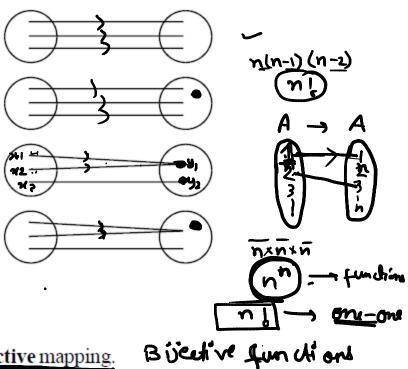
Diagramatically into function can be shown as

Thus a function can be one of these four types :

one-one onto (injective & surjective)

- (b) one-one into (injective but not surjective)
- (c) many-one onto (surjective but not injective)
- (d) many-one into (neither surjective nor injective)

- (i) If f is both injective & surjective, then it is called a **<u>Bijective</u>** mapping. The bijective functions are also named as invertible functions.
- (ii) If a set A contains n distinct elements then the number of different functions defined from $A \rightarrow A$ is $n^n \&$ out of it n ! are one one.



Problem

For real x, let $f(x) = x^3 + 5x + 1$, then (A) f is one-one but not onto R

(B) f is onto R but not one-one

(D) f is neither one-one nor onto R

$$f(x) = x^{3} + 5x + 1$$

$$f'(x) = \overline{ax^{2} + 5} > 0$$

$$f \uparrow = \underline{ax^{2} + 5} > 0$$

$$f \uparrow = \underline{nurearing}$$

$$Range = R. \quad (-\infty, \infty)$$

Problem

The function $f: [2, \infty) \rightarrow Y$ defined by $f(x) = x^2 - 4x + 5$ is both one-one and onto if:

(A) Y = R (B) $Y = [1, \infty)$ (C) $Y = [4, \infty)$ (D) $[5, \infty)$

If the function
$$f: \mathbf{R} - \{1, -1\} \rightarrow A$$
 defined by

$$f(x) = \frac{x^2}{1 - x^2}, \text{ is surjective, then } A \text{ is equal to} (2019 \text{ Main, 9 April I})$$
(a) $\mathbf{R} - \{-1\}$
(b) $[0, \infty)$
(c) $\mathbf{R} - [-1, 0)$
(d) $\mathbf{R} - (-1, 0)$

$$f(\alpha) = \frac{x^2}{1 - x^2}$$

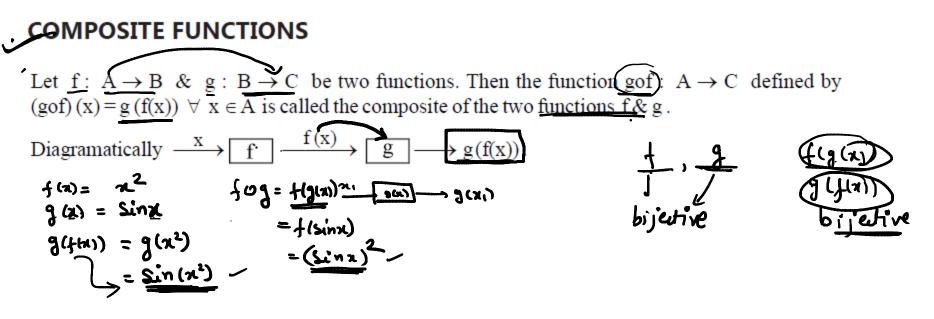
$$y = \frac{x^2}{1 - x^2}$$

$$y = x^2$$

$$y = x^2 (1 + y)$$

$$n^2 = \frac{4}{1 + y}$$
(a) $\mathbf{R} - (-1) = (-\infty)$
(b) $\mathbf{R} - (-\infty)$
(c) $\mathbf{R} -$

-



f.(g(h)) = flg. (min)

PROPERTIES OF COMPOSITE FUNCTIONS :

- (i) The composite of functions is not commutative i.e. $gof \neq fog$.
- (ii) The composite of functions is associative i.e. if f, g, h are three functions such that fo (goh) & (fog) oh are defined, then fo (goh) = (fog) oh.
- (iii) The composite of two bijections is a bijection i.e. if f & g are two bijections such that gof is defined, then gof is also a bijection.