Ionization Enthalpies

- Fairly low I. E
- First ionization enthalpy is around 600 kJ mol⁻¹, the second about 1200 kJ mol⁻¹ comparable with those of calcium.
- Due to low I. E, lanthanides have high electropositive character

Coloured ions

- Many of the lanthanoid ions are coloured in both solid and in solution due to f – f transition since they have partially filled f – orbitals.
- Absorption bands are narrow, probably because of the excitation within f level.
- La³⁺ and Lu³⁺ ions do not show any colour due to vacant and fully filled f- orbitals.

Magnetic properties

- The lanthanoid ions other then the f⁰ type (La³⁺ and Ce³⁺) and the f¹⁴ type (Yb²⁺ and Lu³⁺) are all paramagnetic. The paramagnetism rises to the maximum in neodymium.
- Lanthanides have very high magnetic susceptibilities due to their large numbers of unpaired *f*-electrons.

Oxidation States

- Predominantly +3 oxidation state.
- +3 oxidation state in La, Gd, Lu are especially stable (Empty half filled and Completely filled f – subshell respectively)
- Ce and Tb shows +4 oxdn state (Ce ⁴⁺ 4f^o & Tb ⁴⁺
 4f⁷)
- Occasionally +2 and +4 ions in solution or in solid compounds are also obtained.
- This irregularity arises mainly from the extra stability of empty, half filled or filled f subshell.

- The most stable oxidation state of lanthanides is +3. Hence the ions in +2 oxidation state tend to change +3 state by loss of electron acting as reducing agents whereas those in +4 oxidation state tend to change to +3 oxidation state by gain of electron acting as a good oxidising agent in aqueous solution.
- Why Sm²⁺, Eu²⁺, and Yb²⁺ ions in solutions are good reducing agents but an aqueous solution of Ce⁴⁺ is a good oxidizing agent?

properties

- Silvery white soft metals, tarnish in air rapidly
- Hardness increases with increasing atomic number, samarium being steel hard.
- Good conductor of heat and electricity.
- Promethium Radioactive

Chemical Properties

- Metal combines with hydrogen when gently heated in the gas.
- The carbides, Ln₃C, Ln₂C₃ and LnC₂ are formed when the metals are heated with carbon.
- They liberate hydrogen from dilute acids and burn in halogens to form halides.
- They form oxides and hydroxides, M₂O₃ and M(OH)₃, basic like alkaline earth metal oxides and hydroxides.

The Actinides

- All isotopes are radioactive, with only ²³²Th, ²³⁵U, ²³⁸U and ²⁴⁴Pu having long half-lives.
- Only Th and U occur naturally-both are more abundant in the earth's crust than tin.
- The others must be made by nuclear processes.

- The dominant oxidation state of actinides is +3. Actinides also exhibit an oxidation state of +4. Some actinides such as uranium, neptunium and plutonium also exhibit an oxidation state of +6.
- The actinides show actinide contraction (like lanthanide contraction) due to poor shielding of the nuclear charge by 5f electrons.
- All the actinides are radioactive. Actinides are radioactive in nature.

Actinoide Contraction

- The size of atoms / M³⁺ ions decreases regularly along actinoid seris. The steady decrease in ionic/ atomic radii with increase in atomic number is called Actinoide Contraction.
- The contraction is greater from element to element in this series – due to poor shielding effect by 5 f electron.

Electronic configuration

Element name S	Symbol	Z	Ln	Ln ³⁺	Radius Ln ³⁺ / pm		
Actinium	Ac	89	[Rn] 6d ¹ 7s ²	[Rn]4f ⁰	111		
Thorium	Th	90	[Rn]5d ² 7s ²	[Rn]4f ¹			
Protactinium	Ра	91	[Rn]5f ² 6d ¹ 7s ²	[Rn]4f ²			
Uranium	U	92	[Rn]5f ³ 6d ¹ 7s ²	[Rn]4f ³	103		
Neptunium	Np	93	[Rn]5f ⁴ 6d ¹ 7s ²	[Rn]4f ⁴	101		
Plutonium	Pu	94	[Rn]5f ⁶ 7s ²	[Rn]4f⁵	100		
Americium	Am	95	[Rn]5f ⁷ 7s ²	[Rn]4f ⁶	99		
Curium	Cm	96	[Rn]5f ⁷ 6d ¹ 7s ²	[Rn]4f ⁷	99		
Berkelium	Bk	97	[Rn]5f ⁹ 7s ²	[Rn]4f ⁸	98		
Californium	Cf	98	[Rn]5f ¹⁰ 7s ²	[Rn]4f ⁹	98		
Einsteinium	Es	99	[Rn]5f ¹¹ 7s ²	[Rn]4f ¹⁰			
Fermium	Fm	100	[Rn]5f ¹² 7s ²	[Rn]4f ¹¹			
Mendelevium	Md	101	[Rn]5f ¹³ 7s ²	[Rn]4f ¹²			
Nobelium	No	102	[Rn]5f ¹⁴ 7s ²	[Rn]4f ¹³			
Lawrencium	Lr	103	[Rn]5f ¹⁴ 6d ¹ 7s ²	[Rn]4f ¹⁴			

Magnetic properties

- Paramagnetic behaviour
- Magnetic properties are more complex than those of lanthanoids.

M.P and B.P

High M.P and B.P

Do not follow regular gradation of M.P or B.P with increase in atomic number

IONISATION ENTHALPY

• Low I.E. so electropositiity is High

COLOUR

- Generally coloured
- Colour depends up on the number of 5 f electrons
- The ions containing 5 f ° and 5 f ⁷ are colouress

Eg –

U³⁺ (**5** f³) – Red

NP ³⁺ (**5 f** ⁴) – Bluish

Chemistryof Coordination Compounds

Bonding in Coordination Compounds

- ✓ Review: ionic vs. covalent bond
- ✓ Review: electronic structure and periodic table
- ✓ Crystal Field Theory
- ✓ Spectrochemical Series
- ✓ Ligand Field Theory

Where are metals and non-metals in the periodic table ?

Where are the transition metals ?

Which elements form cations and which anions ?

1 H	← IA	E	N	Electronegativity (EN) VIIIA→											2		
2.2	IIA	0.7-	1.4				-		_	•		IIIA	IVA	VA	VIA	VIIA	110
3 Li	4 Be	1.5-	1.9									5 R	6 C	7 N	0 0	9 FI	10
1.0	1.5	20.	29									2.0	2.5	3.0	3.5	4.0	ive
11 Na	12 Mg	3.0-	4.0									13 Al	14 Si	15 P	16 6	17 CI	18 Ar
0.9	1.2	IIIB	IVB	VB	VIB	VIIB	<u>r</u>	VIIIB-		IB	IIB	1.5	1.8	2.1	2.5	3.0	~1
19 K 0.8	20 Ca 1.0	21 Sc 1.3	22 Ti 1.5	23 V	24 Cr 1.5	25 Mn 15	26 Fe	27 Co 1.8	28 Ni 1.8	29 Cu 1.9	30 Zn 1.6	31 Ga 1.6	32 Ge 1.8	33 As 2 0	34 So 24	35 Br 2 &	36 Kr
37 Ru 0.8	38 Sr 1.0	39 Y 1.2	40 Zr 1.4	41 Nb 1.6	42 Mo 1.8	43 Tc 1.9	44 Ru 2.2	45 Rh 2.2	46 Pd 2.2	47 Ag 1.9	48 Cd 1.7	49 In 1.7	50 Sn 1.8	51 Sb 1.9	52 Te 2.1	53 1 2.5	54 Xe
55 Cs 0.7	56 Ba 0.9	57 La 1.1	72 Hf 1.3	73 Ta 1.5	74 W 1.7	75 Re 1.9	76 Os 2.2	77 Jr 2,2	78 Pt 2.2	79 Au 2,4	80 Hg 1.9	81 TI 1.8	82 Pb 1.9	83 Bi 1.9	84 Po 2.0	85 At 2.2	86 Rn

Tutorial Video about chemical bonding

How atoms form bonds ?

Atoms use their VALENCE ELECTRONS to exchange or share electrons to form bonds ! Examples: <u>how many VE</u> are in these elements ? Na Ca Cl Ar C N S P

Which rule can we find for the main group elements ?

8 electron rule (main group

Each elemente in group tends to get 8 valence electrons.

2 ways to do this:

- 1. Exchange electrons between 2 atoms
- 2. Share electrons

Example: NaCl vs. HCl vs. PCl3

Review:

Oxidation Numbers of Transition Metal Ions

In the ions, the energy of the 4s is higher than the 3d \Rightarrow in the ions the 4s electrons are removed first !

 \Rightarrow +1 ONLY for Cu/Ag/Au ! (-1 for Au possible !) \Rightarrow +2 possible for nearly ALL metals (=> remove the two s electrons)

Oxidation Numbers of Transition Metal Ions

Write the d electron number for each metal in the highest common ox. state (highest big dot for each element)

18 electron rule Transition metals (TM)

TM have d-orbitals which should be filled together with s and p orbitals -> 8 + 10 electrons !

Excurs: Hückel's rule

"A planar ring system with $4n+2\pi$ -electrons is aromatic" (n=0,1,2,...)

Are these molecules aromatic ? Cyclobutadiene Cyclopropene Cyclopentadienyl (-) ion Cyclooctatetraene

Ionic Bonding

Two atoms <u>exchange electrons</u> ⇒ionic bond

Combination Metal – Non-Metal:

Fe 1.8 \Leftrightarrow Cl 3.0 => Δ EN = 1.2 Na 0.9 \Leftrightarrow Cl 3.2 => Δ EN = 2.3

High EN difference → high ionic character *(exceptions possible !)*

Covalent Bond

If the EN difference between two atoms is small (smaller than 1.7 as a rule), then the atoms SHARE unpaired electrons instead of exchanging them.

Number of valence electrons = number of bonds

form PCl_3 (PCl_5 also possible)

Which kind of bond ?

Depends on the EN difference ("END") between 2 atoms:

CI-CI $(\delta+)H-CI(\delta-)$ Na(+) CI(-)

What kind of bond ? And which oxidation numbers ?

- Calciumcarbide Ca₂C
- Methyl Lithium LiCH₃
- Boronhydride BH₃
- Tungstencarbide WC
- Nickelchloride NiCl₂
- Ironpentacarbonyl Fe(CO)₅
- Xenonflouride XeF₄

Hemoglobin

Iron(2+) ions are used to transport Oxygen in our bodies –

without Iron, no life !

Chlorophyll

Sun Protection Cream

... is made of Titanium Dioxide as very fine particles in a cream:

Cancer Treatment

The growth of living cells can be blocked by a platinum complex:

The d-block elements: transition **Metals** is sites of enzymes – hemoglobin (oxygen transport), nitrogenases (nitrogen fixation), hydrogenases, etc.

Hemoglobin Green shows Fe-containing site

Heme b

Nitrogen fixation

Heterogeneous catalysis: *Haber-Bosch* process Homogeneous catalysis:

Nitrogenase structure

Vitamin B₁₂ is an example of an organometallic compound (containing metal-carbon bonds).

Fe(II) and Ti(IV) impurities in Al₂O

Ruby Cr(III) impurities in Al₂O₃

Al(II) and Al

Hematite A mineral form of Fe₂O₂

How many groups of transition metals exist ? (compare to the 8 MAIN GROUP elements) And why ?

d-Orbitals

Review of orbitals

VSEPR model

Electron-Pair Geometries

120°

109.5°

Electron-Pair Geometries

<u>#E.P.s</u> Geometry

5 Trigonal Bipyramidal

6 Octahedral

The Trigonal Bipyramid

There are two positions, axial and equatorial, and two bond angles - 90° and 120°.

Bonding e: 6 Non-bonding e: 0

Bonding e: 5 Non-bonding e: 1

Bonding e: 4 Non-bonding e: 2

Energy Levels of d-Orbitals "Crystal

In an atom, the d-orbitals have the same energy ("degenerated")

BUT: if molecules with high electron density approach the atom, then the energy levels for these 2 d-orbitals go up:

Look from

the top down:

Energy Change in "crystal field"

Colour of

Depends on the energy difference between the lower and higher metal d-orbital levels !

Visible light is absorbed and pushes electrons up

=> The higher Δ , the more "blue" is the light absorbed

Green colour => red is absorbed

Conclusion:

The energy absorbed by the green complex is lower than by the yellow complex.

Calculate the absorbed light energy – example red light absorbed (700 nm wavelength)

E = h * c / λ = 6.6*10^(-34) * 3*10^8 m/s / 700 * 10^-9 m = 2.82 * 10^(-19) J or 1.76 eV

Blue light absorbed (400 nm wavelength) E =

Spectrochemical Series

The splitting energy depends on:

1. metal ion: high charge => high splitting : Ni(3+) > Ni(2+) high period => high splitting : Pd > Ni

```
Pt^{4+} > Ir^{3+} > Rh^{3+} > Co^{3+} > Cr^{3+} > Fe^{3+} > Fe^{2+} > Co^{2+} > Ni^{2+} > Mn^{2+}
```

2. ligands:
 empirical order by measurements = "spectrochemical series"
 CO S CN⁻ > NO₂⁻ > NH₃ > -NCS⁻ > H₂O > OH⁻ F⁻ -SCN⁻ S Cl⁻ > Br⁻
 strong-field ligands

Energy Calculations

UV/VIS spectra: scala in cm⁻¹=1/ λ =v "wavenumber" BECAUSE: the wavenumber ~ energy (h* v)

10.000 cm⁻¹ ≈ 120 kJ/mol ≈ 1.24 eV ≈

Example: Fe(H2O)62 + = d?

Compare the energy of low and high spin ! ($\Delta = 10.400 \text{ cm} \cdot 1 / \text{P} = 17.600 \text{ cm} \cdot 1$)

Is the complex dia- or paramagnetic ?

Coordination Numbers

How many ligands will a metal ion have ?

Tetrahedral Complexes ML₄

In a tetrahedron, the ligands have the maximum distance to each other !

A tetrahedral complex, ML₄

Which set of d-orbitals comes in closer contact to the ligands (and is therefore

de-stabilized ?

(draw typical orbitals into this picture and estimate the distances)

Energy Level Splitting

How do we expect the d-energy levels to split up in a tetrahedral field ?

How many d-electrons are OK for tetrahedral?

Tetrahedral complexes

Write ox.number of the metal and no. of d electrons:

[MnO₄][■] (permanganate) [CrO₄]2- (chromate) [FeCl₄]2-[CoCl4]2-[NiCl4]2-[ZnCl4]2-[ZnCl4]2-Ni(CO)4

Which 2 factors determine the geometry ??

118

Square planar from Octahedral

How would the d-orbitals split from an octahedral complex ?

How many d-electrons are OK for square-planar?

Identify the d-orbitals for each coordination !