

Parabola

Vishal Garg (B.Tech, IIT Bombay)

Concepts

1. CONIC SECTIONS:

A conic section, or conic is the locus of a point which moves in a plane so that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line.

- The fixed point is called the Focus.
- The fixed straight line is called the **DIRECTRIX**.
- The constant ratio is called the Eccentricity denoted by (e.)
- The line passing through the focus & perpendicular to the directrix is called the Axis.
- A point of intersection of a conic with its axis is called a VERTEX.

GENERAL EQUATION OF A CONIC: FOCAL DIRECTRIX PROPERTY:

The general equation of a conic with focus (p, q) & directrix lx + my + n = 0 is:

$$(l^2 + m^2) [(x - p)^2 + (y - q)^2] = e^2 (lx + my + n)^2 = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

SAFALTA.COM An Initiative by 31473 331471

Problems

Length of the latus rectum of the parabola (A) 4 (B) 2
$$\frac{25 [(x-2)^2 + (y-3)^2] = (3x-4y+7)^2 \text{ is}}{(C) 1/5}$$

Form
$$(2,3)$$
 Divertoix: $3x - 4y + 7 = 0$ $e = 1$

Forms $(2,3)$ Divertoix: $3x - 4y + 7 = 0$ $e = 1$

PARABOLA: DEFINITION: (e=V)

A parabola is the locus of a point which moves in a plane, such that its distance from a fixed point (focus) is equal to its perpendicular distance from a fixed straight line (directrix).

Standard equation of a parabola is $y^2 = 4ax$. For this parabola:

(i) Vertex is (0, 0)

(ii) focus is (a, 0)

(iii) Axis is y=0

(iv) Directrix is x + a = 0

FOCAL DISTANCE:

The distance of a point on the parabola from the focus is called the FOCAL DISTANCE OF THE POINT.

FOCAL CHORD:

A chord of the parabola, which passes through the focus is called a FOCAL CHORD.

DOUBLE ORDINATE:

A shord of the parabola perpendicular to the axis of the symmetry is called a Double Ordinate.

LATUS RECTUM:

A double ordinate passing through the focus or a focal chord perpendicular to the axis of parabola is called the LATUS RECTUM. For $y^2 = 4ax$.

- Length of the latus rectum = 4a.
- ends of the latus rectum are L(a, 2a) & L'(a, -2a).

Four standard forms of the parabola are $y^2 = 4ax$; $y^2 = -4ax$; $x^2 = 4ay$; $x^2 = -4ay$

Equation of parabola		$y^2 = 4ax$	$y^2 = -4ax$	$x^2 = 4ay$	$x^2 = -4ay$
(a)	Graphs	ZOS	Š O Z	S	<u>z</u> 0
(b)	Eccentricity	e = 1	e = 1	e = 1	e = 1
(c) (d)	Focus Equation of directrix	S(a, 0) $x + a = 0$	S(-a, 0) $x - a = 0$	S(0, a) $y + a = 0$	S(0, -a) $y - a = 0$
(£) (£)	Equation of axis Vertex	y = 0 O(0, 0)	y = 0 $O(0, 0)$	x = 0 $O(0, 0)$	$ \begin{array}{c} x = 0 \\ O(0, 0) \end{array} $
(g)	Extremities of latusrectum	(a, ±2a)	$(-a, \pm 2a)$	(±2a, a)	(±2a, -a)
(h)	Length of latusrectum	4a	4a	4a	4a
(j)	Equation of tangent at vertex	x = 0	x = 0	y = 0	y=0
(f)	Parametric coordi- nates of any point on parabola	P(at ² , 2at)	P(-at ² , 2at)	P(2at, at ²)	P(2at, -at ²)

$$y^2 = 4axL$$

 $3c = ot^2$, $y = 2at$

The length of latus rectum of a parabola, whose focus is (2, 3) and directrix is the line

$$x - 4y + 3 = 0$$
 is -

(A)
$$\frac{7}{\sqrt{17}}$$

(B)
$$\frac{14}{\sqrt{21}}$$

(C)
$$\frac{7}{\sqrt{21}}$$

(D)
$$\frac{14}{\sqrt{17}}$$

$$\frac{1}{2} = \frac{12+3}{17}$$

$$\frac{1}{17} = \frac{7}{17}$$

POSITION OF A POINT RELATIVE TO A PARABOLA:

The point (x_1, y_1) lies outside, on or inside the parabola $y^2 = 4ax$ according as the expression $y_1^2 - 4ax_1$ is positive, zero or negative.

Hence in short, equation of parabola $S(x, y) = y^2 - 4ax$.

- If $S(x_1, y_1) > 0$ then $P(x_1, y_1)$ lie outside the parabola. (i)
- If $S(x_1, y_1) < 0$ then $P(x_1, y_1)$ lie inside the parabola. (ii)
- If $S(x_1, y_1) = 0$ then $P(x_1, y_1)$ lie on the parabola. This result holds true for circle, parabola and ellipse.

Find the value of α for which the point $(\alpha - 1, \alpha)$ lies inside the parabola $y^2 = 4x$.

$$S = y^{2} - 4x$$

$$S_{1} = d^{2} - 4(d-1)$$

$$\text{Thosich} : S_{1} < 0$$

$$d^{2} - 4d + 4 < 0$$

$$(d-2)^{2} < 6$$

$$d \in \emptyset$$

SAFALTA (

CHORD JOINING TWO POINTS :

The equation of a chord of the parabola $y^2 = 4ax$ joining its two points $P(t_1)$ and $Q(t_2)$ is

$$y(t_1 + t_2) = 2x + 2at_1t_2$$

Note:

- (i) If PQ is focal chord then $t_1 t_2 = -1$.
- (ii) Extremities of focal chord can be taken as $(at^2, 2at)$ & $(\frac{a}{t^2}, \frac{-2a}{t})$

P(ati ,2011)

Q(at 2,201)

D>0

D=0

LINE & A PARABOLA :

D>O

150

DC0

The line y = mx + c meets the parabola $y^2 = 4ax$ in two points real, coincident or imaginary according (a)

as $a > = < cm \Rightarrow$ condition of tangency is, $c = \frac{a}{c}$.

Note: Line y = mx + c will be tangent to parabola $x^2 = 4ay$ if $c = -am^2$.

SAFALTA.COM An Initiative by SHPT-SSHPH

Problems

If the line $y = 3x + \lambda$ intersect the parabola $y^2 = 4x$ at two distinct points then set of values of λ is -

(A) (3, ∞)

(B) (-∞, 1/3)

(C) (1/3, 3)

(D) none of these

y = mx + C $y^{2} = 4\alpha x$ $y^{2} = 4\alpha x$ $y^{2} = 4x$ $y^{2} = 4x$

TANGENTS TO THE PARABOLA $y^2 = 4ax$:

(i)
$$^{\text{TO}}$$
 yy₁ = 2 a (x + x₁) at the point (x₁, y₁);

(ii)
$$y = mx + \frac{a}{m} (m \neq 0)$$
 at $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$

(iii)
$$ty = x + at^2 at (at^2, 2at).$$

Note: Point of intersection of the tangents at the point $t_1 & t_2$ is $[at_1 t_2, a(t_1 + t_2)]$.

A tangent to the parabola $y^2 = 8x$ makes an angle of 45 with the straight line y = 3x + 5. Find its

equation and its point of contact. $\left(\frac{\Delta}{2}\right)^{20}$

THE WY	y=3x+5	450	slope of tangent = m
y=ex	m1=3	0-450	
$y^{2}=4\alpha x$ $\alpha=2$	tano = 1	+m1m2	
Stape of tayent: 1 2	1=13-	sm)	
ean of toyut: $y = mx + \frac{d}{m}$ $y = \frac{1}{2}x + \frac{2}{2}$ $y = \frac{1}{2}x + \frac{2}{1/2}$	3-m = ±	4m	= (+3m) 3-m=-1 -3m -2 2m=-5 n=1/2 m=-2

NORMALS TO THE PARABOLA $y^2 = 4ax$:

(i)
$$y - y_1 = -\frac{y_1}{2a} (x - x_1) \text{ at } (x_1, y_1)$$
; $y = mx - 2am - am^3 \text{ at } (am^2 - 2am)$
(iii) $y + tx = 2at + at^3 \text{ at } (at^2, 2at)$.

 $\textbf{Note:} \ \ \text{Point of intersection of normals at} \ \ t_1 \ \& \ t_2 \ \text{are, a} \ \ (t_1^2+t_2^2+t_1t_2+2) \ ; - \ \text{a} \ t_1 \ t_2 (t_1+t_2).$

Normal.

THREE VERY IMPORTANT RESULTS:

- (a) If $t_1 \& t_2$ are the ends of a focal chord of the parabola $y^2 = 4ax$ then $t_1 t_2 = -1$. Hence the co-ordinates at the extremities of a focal chord can be taken as $(at^2, 2at) \& \left(\frac{a}{t^2}, -\frac{2a}{t}\right)$.
- (b) If the normals to the parabola $y^2 = 4ax$ at the point t_1 , meets the parabola again at the point t_2 , then

$$t_2 = -\left(t_1 + \frac{2}{t_1}\right).$$

(c) If the normals to the parabola $y^2 = 4ax$ at the points $t_1 & t_2$ intersect again on the parabola at the point t_3 , then $t_1 t_2 = 2$; $t_3 = -(t_1 + t_2)$ and the line joining $t_1 & t_2$ passes through a fixed point (-2a, 0).

Normal to the parabola $y^2 = 8x$ at the point P (2, 4) meets the parabola again at the point Q. If C is the centre of the circle described on PQ as diameter then the coordinates of the image of the point C in the line y = x are

- (A)(-4,10)
- (B) (-3, 8) (C) (4, -10) (D) (-3, 10)

2= ot2, 4=2at J,=1 4=8x a=2 p(2,4) P(at2, zatr) (c(at2, zetz) カート t2=-+1-2 Q (+2=-3) +2=-1-2 image in (6=2) i (2-4,10) Q(at 2, 200ts) P(2,4), Q (18,-12)

C is centre 1. e midpoint of PO = (10,-4) 2(9), 2×26-3) (18,-12)

The equation to the pair of tangents which can be drawn from any point (x_1, y_1) to the parabola $y^2 = 4ax$ is given by: $SS_1 = T^2$ where:

$$S = y^2 - 4ax$$
 ; $S_1 = y_1^2 - 4ax_1$; $T = y y_1 - 2a(x + x_1)$.

PC4, USIN choud of content

T=D

y=4ax

yy1=20(x(+x1) → (.0,C

SAFALTA.COM An Initiative by 31472 STATEST

Problems

If the line x - y - 1 = 0 intersect the parabola $y^2 = 8x$ at P & Q, then find the point of intersection of tangents at P & Q.

> does not represent shape.

DIRECTOR CIRCLE:

Locus of the point of intersection of the perpendicular tangents to the parabola $y^2 = 4ax$ is called the **Director Circle.** It's equation is x + a = 0 which is parabola's own directrix.

X+0=0 y2=40X

gea grange

Directorix is the Director wirds for parabola.

SAFAL ANIME SAFAL ANIME

The angle between the tangents drawn from a point (-a, 2a) to $y^2 = 4ax$ is -

(A) $\pi/4$

(D) $\pi/6$

CHORD WITH A GIVEN MIDDLE POINT:

Equation of the chord of the parabola $y^2 = 4ax$ whose middle point is

$$(x_1, y_1)$$
 is $y - y_1 = \frac{2a}{y_1}$ $(x - x_1)$. This reduced to $T = S_1$

where $T \equiv y y_1 - 2a (x + x_1) & S_1 \equiv y_1^2 - 4ax_1$.

SAFALTA.COM An Initiative by SUPPT-STREET

Problems

Find the locus of middle point of the chord of the parabola $y^2 = 4ax$ which pass through a given (p, q).

