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 IIT – JEE SYLLABUS 

  

 

Gaseous State : Tentative Lecture Flow  

 

1  Ideal gas laws and Ideal gas equation 

2 Problems on ideal gas equation, Dalton’s law 

3 Graham’s law  

4 Eudiometry 

5 KTG 

6 Real gas equation 

7 Compressibility factor, virial equation 
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1. INTRODUCTION 

 

   

The gaseous state is characterized by the following physical properties. 

 Gases are highly compressible. 

 Gases exert pressure equally in all directions. 

 Gases have much lower density than the solids and liquids. 

 The volume and the shape of gases are not fixed. These assume volume and shape 

of the container. 

 Gases mix evenly and completely in all proportions without any mechanical aid. 
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2. EXPERIMENTAL GAS LAWS 

 

Basic parameters associated with gas  

 (i) Pressure:-  

   Pascal: - It is SI unit for pressure; Pascal is very small amount of pressure  

o (10mg weight on 1cm
2
 area)  

o 1 Pa = 1 N/m2 

       Atm: -        1 atm = 76 cm of Hg = 760 torr = 101325 Pa = 1.01325 bar 

 

(ii) Volume :-    1 L = 1000 ml = 10-3 m3 = 1000 cc  

 

(iii) Temperature :-                                    T K = T0 C + 273 

 

(iv) Amount of gas :-  Generally measured in moles of gas 
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Boyle’s Law  

   

    V  
P

1  (if T and n constant).    PV = Constant 
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Graphical Representation: - Boyle’s law can be graphically represented in following 

ways                   
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Example 1: A 1.1 L flask containing nitrogen at a pressure of 710 mm is connected to 

an evacuated  flask of unknown volume. The nitrogen, which acts ideally is 

allowed to expand into the  combined system of both the flasks isothermally. If the 

final pressure of nitrogen is  

  583 mm, determine the volume of evacuated flask. 

Solution: Applying Boyle’s law:  p1V1 = p2V2   

   Let V be the volume of evacuated flask 

                          710  1.1 = 583 (1.1 + V)  

                        V = 0.24 L  
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Charles law 

   

  

  Thus, 
0

t 0 0

V t
V V t = V   1 +

273 273

 
    

     

or     t 0

273 + t
V = V   

273

 
 
 

                    (since K = oC + 273)   … Eq(i) 

  by substituting T for 273 + t and To for 273 in Eq. (i), 

  
0

t

0

V T
V

T


   or 

t 0

0

V V

T T
  or 

V
 = constant (if pressure is kept constant)

T
 

V  T (if pressure is kept constant)       

 P2  > P1 

 P1 

P2 

 

 V
 

 T 
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In fact, no substance exists as a gas at a temperature near Kelvin zero, through the 

straight-line plots can be extrapolated to zero volume. The temperature that corresponds 

to zero volume is −273.15oC. 

 

 Can you guess how the graph of volume vs Temperature (0C) will look like 
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Gay Lussac’s Law 

 
0

t 0

P  t
P = P  + 

273


 or t 0

 t
P = P  1 + 

273

 
 
 

   

 or t 0 0

0

273 + t T
P = P   = P

273 T

 
 
 

 

 or 
t 0

0

P P
= 

T T  or P  T (if volume is kept constant) 

  

At constant volume, the pressure of a given amount of a gas is directly proportional 

to its  absolute temperature. 
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Example 3:  A certain amount of ethane is confined in a bulb of 1 liter capacity. The 

bulb is so weak that it will burst if pressure exceeds 10 atm. Initially gas exerts 8 atm 

pressure at 270 C.   

 Find temperature at which the bulb will burst? 

Solution:      Considering limiting condition 

                     Since volume remain constant   1 2

1 2

P P
= 

T T
  

                     Thus 8/300=10/T2  

  T2 = 375 K 
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Ideal Gas Law 

  

 

1 1 2 2

1 2

p V p V
 =  

T T       i.e. 

pV
 = K

T  

We thus have the general gas law  

   pV = nRT 

The universal gas constant R = pV/nT.  
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Numerical Values of R 

i) In liter atmosphere = 0.0821 litre atm deg–1 mole–1  ii) In ergs = 8.314  107 erg deg–

1 mole–1 

iii) In calories = 1.987 cal deg–1 mole–1   iv) In Joules = 8.314 J deg–1 mole–1 

 

 Use the value of R depending on the units in which value of pressure and volume 

has been used in ideal gas equation. 
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Example 4 : What mass of ammonia will exert same pressure as 12 g of H2S(g) in 

the same container  under the similar conditions of temperature? 

Solution: Under identical conditions of T and V, p  n  

   equal moles of ammonia as that of H2S(g) will exert same pressure, when 

confined in     

  the same container 

 Moles of H2S = 12/34 = moles of ammonia  

   Mass of ammonia = (12/34)   17 = 6g 
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Example 5: 4 g of an ideal gas was confined in a 1.0 L flask at 1.0 atm. Increasing 

temperature of  flask by 30oC increases gas pressure by 8%. Determine molar mass 

of gas. 

Solution: Let the initial temperature be, TK.  

Since, n and V are constants P1/T1= P2/T2  KT
T

T
375

3008.1

1



    

Since pV = nRT and n = w/M   

                          123
375082.0

114





 M

M
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 Relation between Molecular Mass and Gas 

Density                 

        From the ideal gas equation 

             P = 
M

dRT
RT

VM

w

V

nRT



                        

M = RT
P

d  

 

 M= Molecular mass, P = Pressure, T=Temperature,  d= Density 

 

 Vapour Density 

  

 

 W(gas) = 
RT

PVM

 
and 

 (
2

2 RT

PV
WH


 mol. wt.of  Hydrogen is 2) 
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 
2

M

W

W

2H

gas
  = Vapour density of gas 

 Vapour Density × 2 = Molecular wt. 

  

 

 Vapour density of a gas is same at any temperature, pressure and volume.  

 

Example 6: Determine the density of carbon dioxide gas at the sublimation temperature 

of 78oC  

  and 1.0 atm, assuming ideal behaviour of the gas. 

Solution: 75.2
195082.0

441







RT

pM
 g L1 
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Example 7: Determine payload of a 1000,000 L balloon filled with He gas at 27oC and 

1.0 atm. Composition of air can be considered to be 79% N2 and 21% O2 by 

volume and balloon  is massless. 

 

Solution: Moles of gas present in balloon 

  4.40650
300082.0

000,1000





RT

pV
 

  Payload = Wair  Wgas = 40650.4 (Mair  MHe) g  

   

  = 75.1009)484.28(
1000

4.40650
 kg kg 
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 2.6 Dalton’s Law of Partial Pressure   

 

The statement of Dalton’s Law is “The total pressure of a mixture of non-reacting 

gases is equal to the sum of their partial pressures”. 

  ptotal = p1 + p2 + …. 

  

  1
1 total 1 total

total

n
p =  p  = x p

n
 

  2
2 total 2 total

total

n
p =  p  = x p

n   

x1 , x2, and so on are the mole fraction of each gas respectively 
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 Partial Pressure of a gas = Mole fraction of the gas × Total Pressure of the 

gaseous mixture 

 

 Dalton’s Law of Partial pressure is applicable only for non – reacting gases. 
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Example 8: Calculate partial pressure of nitrogen and oxygen in air assuming it to be 

composed of mostly nitrogen and oxygen. Volume percentage of oxygen and 

nitrogen in air are 20 and 80 respectively, and atmospheric pressure to be 1.0. 

Solution: Mole fraction of N2(g) = 0.8  and Mole fraction of O2(g) = 0.2 

  Partial pressure of N2(g) = 0.8   1 = 0.8 atm 

  Partial pressure of O2(g) = 0.2   1 = 0.2 atm 
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Example 9: 0.1 mol of ethane gas and 0.3 mol of oxygen gas are taken in a flask at 27oC 

and 1.0 atm  pressure and sealed. Now the flask is heated to 1000 K where the 

following reaction  occurs  quantitatively: 

  C2H6 + 5

2
O2   2CO + 3H2O 

  Calculate partial pressure of each component at the end of reaction. 

Solution: The balanced chemical reaction (with states specified) is 

                        C2H6(g) + 5

2
O2(g)  2CO(g) + 3H2O(g) at 1000 K  

  Moles at start: 0.10        0.3    0        0 

  Moles at end:    0       0.05  0.2      0.3 

  Total moles ng = 0.55 

  Now, applying gas laws at constant volume 

  1 1 1

2 2 2

p n T

p n T
   0.55 10002 2 1.0 4.58

2 1 0.4 300
1 1

n T
p p

n T

   
        

 atm 

   0.05
p 4.58 0.416

O 0.552

 
   
 

 atm 
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   664.158.4
55.0

2.0
p

2CO 







  atm   and 

   0.30
p 4.58 2.5

H O 0.552

 
   
 

 atm 
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Partial pressure and aqueous tension 

Dalton’s law is used to calculate the 

pressure of a dry gas when it is 

collected over water at atmospheric 

pressure. By Dalton’s law.  

Pressure of dry gas = atmospheric 

pressure – aqueous tension 

Aqueous tension is partial pressure 

of water vapour in air and it depends 

only on temperature. It increases with 

temperature and becomes 760 mm at 

100°C. 

 

 

Water 

(Gas + Water vapour) 
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  Graham’s Law of Diffusion  

   

                  

  

 

 

 

 

 

 

Diffusion: mixing of gas molecules to minimize pressure 

gradient 

 

Effusion: escape of a gas through a pinhole 
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   1

M
r  at constant P & T 

r M
1 2=
r M
2 1

  at constant P & T  

  

ri  pi  and  1
  

i M
i

r     

 
p
ir   

i M
i

 , if rate of effusion is linearly related to its partial pressure. 

Under the above conditions, 2

1

p M1 1   
p M

2 2

r

r
  
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 Rate can be expressed in following terms  

  

   
Volume diffused (V) moles diffused(n)

r = =
time taken time taken  

 

       

distance travelled in a narrow tube(d)
r =

time taken   
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Example 10: Rate of effusion of ethane is 1.53 times faster than rate of a 

hydrocarbon containing 14.27% hydrogen by weight, under identical conditions. 

Deduce the molecular formula of hydrocarbon. 

Solution: 53.1
30)(

)(


M

nhydrocarbor

ethaner
 70.23M   

  Empirical formula      C     H 

   Wt.%   85.73  14.27 

   Mol %   85.73 / 12 14.27 

   SR       1     2 

  Empirical formula = CH2 ;   

Molecular weight = 70.23 

  = Empirical formula weight n = 14 n 

  n =5 ; hence, molecular formula of hydrocarbon is C5H10. 
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Example 11: Ammonia gas and HCl gas from the two flasks, at same temperature 

and pressure were injected simultaneously through pinholes of similar 

geometry, attached at the two ends of a 1.0 m long glass tube. At what distance 

from the ammonia end, the first flash of white fume would be observed? 

Solution:  

 

 

 

 

43.59
17

5.36

100
3 


 x

x

x

r

r

HCl

NH cm 

 

Point at which the two gases will meet first to 

produce white fumes of NH4Cl 

100 cm 

HCl NH3 

 x cm 
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Example12 : Diffusion of a certain volume of N2(g) at 1.0 atm and 300 K, takes 25s, 

while same volume of an unknown gas of Xenon and Fluorine at 2.0 atm and 

300 K takes 34 s for diffusion through the same pinhole. Deduce the molecular 

formula of the unknown gas. 

Solution: Rate 1

time
   

  282

1

2825

34
22

MM

P

P

r

r

gas

N

gas

N
    M = 207.15 

  Since atomic mass of Xe = 131, the gas cannot contain more than one Xe atom 

per  molecule.Hence, the molecular formula of unknown gas could be XeFn. 

   207.15 = 131 + 19 n   x = 4 and gas is XeF4. 
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 Instantaneous rate of diffusion 

 Instantaneous rate of decrease of partial pressure (−dp/dt) to be directly proportional 

to instantaneous gas pressure and inversely proportional to square root of molar mass, 

instantaneous pressure at any time can be solved as  dp Kp

dt M
   where K is constant of 

proportionality, 

   
2

1

p

p 0

dp K
   = dt

p M

t

    1

2

p Kt
ln   = 

p M

 
 
 

 or   p2 = p1  exp Kt
 

M

 
 
 

 

  Hence, partial pressure decreases exponentially with time as 

   

 

ln p 

t 

p 

t 
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Example13: Pressure of nitrogen gas falls from 4000 mm to 2000 mm in 30 min, 

when allowed to effuse through a pinhole in the cylinder. If the same cylinder is 

filled with an equimolar mixture of N2 and He gas at 4000 mm of Hg, what 

would be the molar ratio of gases (N2 / He) in the cylinder after 1.0 hour? 

Assume rate of decrease of pressure as linear function of gas pressure. 

Solution: Since, initially equal moles of gases are present, initial partial pressure of 

both N2 and He  is  2000 mm of Hg. Also 

  
M

tK

p

p

M

KP

dt

dP 1

2

1ln 







  

  For N2(g):  
28

30

2000

4000
ln

K








    … (i) 

  In mixture: For N2 : 

    
  28

602000
ln

2

K

p N














     … (ii) 

  For He: 
  4

602000
ln

K

p Hg














     … (iii) 

  Solving Eqs. (i), (ii) and (iii), 
2Np = 500 mm : pHe = 51 mm of Hg  

  Molar ratio after 1.0 hour (N2 : He) =    HeN pp :
2

 = 500 : 51 
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 Diffusion in case of dissociation or association of gas 

     

Example 14: Rate of effusion of ethane gas is 1.9 times, the rate of effusion of a 

partially decomposed Cl2O7 (g) mixture. Determine the degree of dissociation 

of Cl2O7 (g). 

Solution: 
 

9.1
30

62  mix

mix

HC M

r

r
     

 
 5.31

183

5.31
3.108 72







OClM
M mix      = 0.197 
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 Separation of gases using diffusion  

 When a gaseous mixture containing lighter and heavier components is allowed to pass 

through several diffusion chambers connected in series, there occur enrichment of 

lighter component in each successive step. By carrying out diffusion of a gaseous 

mixture for a specific number of steps in succession, a specified enrichment of lighter 

component can be achieved as follows: 

    

    

n  1

2
A A B A

B B A Bn  1 1 n

r n M n
 =   = 

r n M n





       
       
       

 

 This Equation indicates that after (n 1)th step of diffusion a specific enrichment 

(nA/nB)n can be achieved in the nth chamber.  

 

 

A, B 

    

1 2 3 4 n 
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Example 15: A sample of Ne is originally 10% by mole in Ne20 isotope and remaining 

are Ne22  isotope. In  how many steps of effusion, 25% enrichment of Ne20 can be 

achieved? 

Solution: Initially 9

1

90

10
22

20










Ne

Ne
   

  Desired ratio : 
3

1

75

25
22

20










Ne

Ne
  

  Applying equation : 
3

1

20

22

9

1 2

1









n

  
n 1 22

log log 3 n 24
2 20

  
    

   
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  2.8 Eudiometry 

 Eudiometry or “gas analysis”  

 

The various reagents  used for absorbing different gases are  

 O3  turpentine oil 

 O2 alkaline pyrogallol 

 NO  FeSO4 solution 

 Cl2, CO2,SO2 alkali solution (NaOH, KOH, Ca(OH)2, HOCH2CH2NH2, etc.) 

3NH Water  

 2 4 2,H O CuSO CaCl  

 2 2CO Ammonical Cu Cl  
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Example 16: A gaseous hydrocarbon requires 6 times its own volume of O2 for 

complete oxidation   and produces 4 times its volume of CO2. What is its 

formula? 

 

Solution: The balanced equation for combustion 

  x y 2 2 2

y y
C H x O xCO H O

4 2

 
    
 

 

  1 vol. y
x vol

4

 
 

 
 y

x 6
4

     ,  or  4x y 24.............. 1   

  Again x = 4 since evolved CO2 is 4 times that of hydrocarbon  

   16 + y = 24 or y = 8  formula of hydrocarbon C4H8 
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 3. KINETIC THEORY OF GASES  

   

  3.1 Postulates of KTG    

 

 The volume occupied by the molecules is negligible in comparison to the total volume 

occupied by the gas (i.e. volume of the container). 

 

 There is no force of attraction or repulsion amongst the molecules, i.e. they are 

moving independent of one another. 

 At any instant, a given molecule can have kinetic energy ranging from a small value 

to a very large value, but the average kinetic energy remains constant for a given 

temperature, i.e. the average kinetic energy is proportional to the absolute temperature 

of the gas. 
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 3.2 Velocity Distribution of Gas molecules 

  Distribution of molecular speed over a possible range was first investigated by 

Maxwell using the theory of probability. Results were expressed as the Maxwell law for 

distribution of molecular speed as 
2

2

3/ 2  mu

22RT
u

3/ 2  mu

22kT

M
dN  = 4 N  e  u   du

2 RT

m
= 4 N  e  u   du

2 Tk











 
 
 

 
 
 

 

 

 

 A plot of fraction of molecules in the speed range u and u + du,  
1 dNu

 
N du

 
 
 

 vs u is described 

in the graph.                           

 The peaks in the curve correspond to a speed, which is possessed by maximum fraction 

of molecules, called “most probable speed”.  

 

 

Fraction
   of the
Molecule

Speed
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 Some conclusive points for distribution of molecular speeds are : 

  

 

 

(T2>T1) 

 The total area under the curve in Figure is a measure 

of total number of molecules in collection 

 

 

 

(MX>MY): 

 

 
Fraction
   of the
Molecule

Speed

T
1

T
2

For a given gas and number of mole but diffrent temperature

 

 
Fraction
   of the
Molecule

Speed

X

Y

For a given number of mole and temperature but diffrent gas
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Average velocity = 
n

unununun nn ........332211

  

Uav = 8RT

πM
 

  n

unununun
U nn

rms

22

33

2

22

2

11 ........
     

  Urms = M

RT3
    Vmp = 

2RT

M  

Furthermore Ump : Uav : Urms : : 
2RT

M
: 

8RT

πM
 : 

3RT

M
= 2  : 

8

π
 : 3  =1 : 1.128 : 1.224 

Also Uav = Urms  0.9213 

 

 For calculating Vrms, Vmp, or Vav by above relations the value of M should be 

used in kg/mole and R should be taken as 8.314 J/K mole to get velocity in m/s.  
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Example 17: Derive an expression relating to increase in Urms of a gas for a relatively 

small  temperature rise and calculate increase in urms for a sample of Ne(g) as the 

temperature is  increased from 100 K to 101 K? 

Solution:       
rms

rms
rms

Mu

R

M

RTM

R

TM

R

dT

du

M

RT
u

2

3

3

1

2

3

2

133
  

  rms

rms

3R
du dT

2Mu
  rms

rms

3R
u T

2Mu
     

 353
1020

100314.833
3







M

RT
urms ms1 

 766.1)100101(
35310202

134.83
3







rmsu ms1 
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3.3 Kinetic interpretation of Pressure 

2mN 1
p = u

V 3

 
 
   or 

21
p V = mNu

3  

From Maxwell distribution we already know 
M

RT
u

32    

So        pV =  nRT
M

RT
nM

M

RT
mN 

3

3

1
    pV=nRT 

 

 Average Translational kinetic energy per molecule   = ½ murms
2   = 3/2Kt 

 

 Average Translational Kinetic energy per mole   = NA × ½ murms
2 = 3/2 RT 

 

 k(Boltzmann constant) = R/NA = 1.38 × 10-23 JK-1 
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Example 18: Calculate the pressure exerted by 1025 gas molecules each of mass 1022 

g in a container of volume 1.0 dm3. The root mean square speed is 105 cm s1. 

 

Solution: 
2

3

1
umNpV   33

2132525

10

1
)10(1010

3

1

m
mskgp



   
91

10
3

   Pa 
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Example 19: A two litre bulb contains 31023 gas molecules and exert 106 Pa 

pressure. Calculate translational energy per molecule and total translational 

energy. 

Solution: pV = nRT 

6 3 23

23

pV 10 2 10 6.022 10
T 483K

nR 3 10 8.314

   
   

   

  
23 20

trans b

3 3
E k T 1.38 10 483 10 J / moleule

2 2

         

  
3

( ) 3000.25
2

trans bE Total k TN J   
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4. REAL GASES   

  

The ideal gas laws are derived from the kinetic theory of gases which is based on the 

following two important assumptions: 

(i) The volume occupied by the molecules is negligible in comparison to the total 

volume of the gas. 

(ii) The molecules exert no forces of attraction upon one another.  

 It is because neither of these assumptions can be regarded as applicable to real gases 

that the real gases show departure from the ideal behaviour. 
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4.1 Van der waal Equation 

 

 

 

 Volume Correction  

 

V = V container  nb as shown in Fig  

 Thus excluded volume per pair of molecules 
3 34 4

π(2r) = 8 πr
3 3

 
 
   

 

 Excluded  volume per molecule  
3 31 4 4

= 8 πr = 4 πr = 4 (volume occupied by a molecule)
2 3 3

    
    
      

 

 Since b represents excluded volume per mole of the gas, it is obvious that  

3

A

4
b = N 4 πr

3

  
  
    

2r 

excluded 

volume 
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 Pressure Correction 

 

     pi = pr + correction term  

 

   

 

This correction term depends upon two factors: 

(i) the number of molecules per unit volume of the container is given as 

   
AnN

N  = 
V

  or 
n

N   
V

   

  

(ii) the number of molecules striking the side of vessel in a unit time also depends upon 

the number of molecules present in unit volume of the container, and hence in the 

present case:
 

n
N   

V
   
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Taking both these factors together, we have 

Correction term  
n

V

 
 
 

 
n

V

 
 
 

 or  Correction term 

2

2

n

V


 


 

2

2

n
correction term = a

V  

 

Where a is the proportionality constant and is a measure of the forces of attraction 

between the molecules. 

 Thus   pi = pr + 2

2

V

n
a   

When these expressions are substituted in the ideal gas equation pi Vi = nRT, we get 

   

2

2

n
(V nb) = nRT

V

a
p

 
  

   

 

This equation is applicable to real gases and is known as the Van der Waals 

equation. 
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 The constants a & b: Van der Waals constant for attraction (a) and excluded 

volume (b) are characteristic for a given gas. Some salient features of a & b 

are: 

i) For a given gas Vander Waal’s constant of attraction ‘a’ is always greater than 

Vander Waals  constant of excluded volume (b). 

ii) The gas having higher value of ‘a’ can be liquefied easily and therefore H2 & He are 

not  liquefied easily. 

iii) The units of a = litre2 atm mole–2 & that of b = litre mole –1 

iv) The numerical values of a & b are in the order of 10–1 to 10–2 & 10–2 to 10–4 

respectively.  
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v) Volume correction factor, depends on molecular size and larger molecule will have 

larger b.  

 For example, size of He, CH4, CF4, C4H10 are in order of He < CH4 < CF4 < C4H10 

 and same will be the order of b. 

vi)  Pressure correction factor (
2

2

n a

V
) depends on intermolecular force of attraction. Hence, 

larger the  intermolecular force of attraction larger the value of ‘a’, for same n and V. 

For example,  intermolecular force of attraction among the molecules H2, CO2, NH3 

are in order of  

 H2 < CO2 < NH3 (H-bonding) thus same is the order of a. 
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4.2 Compressibility Factor 

  

 
m

m

m,ideal

V p
Z = = V

V RT
 

For an ideal gas Z=1 and is independent of pressure and temperature.  

For a real gas, Z = (T, p), is a function of both temperature and pressure. 

 

 

i) At low pressures: ‘V’ is large and ‘b’ is negligible in comparison with V. The Vander 

Waals equation reduces to: 

 2

a
P+ V=RT

V

 
 
 

;  PV + 
a

V  = RT 
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 PV = RT - 
a

V  or PV  RT 

 This accounts for the dip in PV vs P isotherm at low pressures.  

 

ii) At fairly high pressures 2

a

V  may be neglected in comparison with P. The Vander  

Waals equation becomes  

             P (V – b) = RT 

             PV – Pb = RT 
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iii) At very low pressures: V becomes so large that both b and 2

a

V
 become 

negligible and the Vander Waals equation reduces to PV = RT. This shows why 

gases approach ideal behaviour at very low pressures. 
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iv) Hydrogen and Helium: These are two lightest gases known. Their molecules 

have very small masses. The attractive forces between such molecules will be 

extensively small. So 2

a

V
 is negligible even at ordinary temperatures. Thus PV  RT.  

 

CO2

N2

H2

He
Ideal gas

2

1

0 P

Z

  

50°C
0°C

1.0

Z

100°C

0°C

50° C
100°C

P (atm)  

  (Deviation of gases from ideal              The plot of Z vs P for N2 gas at different 

temperature is  

  behaviour with pressure.)         shown here. 
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Example20: The density of steam at 100oC and 1.0 atm pressure is 0.5974 kg m3. 

Determine compressibility factor for steam in the given condition. 

 

Solution           Since Z=Vm,real/Vm,ideal = ρideal/ρreal 

             
985.0

373082.05974.0

181







RT

pM
Z


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4.3  Liquefaction of Gases  

 

  First complete data on pressure - volume -temperature relations of a substance in 

both gaseous and liquid state was obtained by Thomas Andrews on carbon dioxide. 

 At 30.98 °C carbon dioxide remains gas upto 73 atm pressures. The temperature 30.98 °C is 

called critical temperature (TC) of carbon dioxide.  

 

 

 

 

 

 

 

 

 Volume 

P
re

ss
u

re
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At critical point horizontal portion of the isotherm merges into one point. 

 So at point E   
CT

P

V

 
 
 

= 0 and 
C

2

2

T

P

V

 
 
 

= 0   

. 

 

T

p
 = 0

V

 
 
 

 and the condition that this slope has a maximum value of  
T T

p
 = 0

V V

   
  

   
 

 

 Vc = 3b,   c

8a
T = 

27Rb  

 

 
 

c
c 2 2

c c

RT a R(8a/27Rb) a
p  =    =   

V   b V (3b  b) (3b)
 

   2 2 2

4a a a
    = 
27b 9b 27b

 
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4.4 Virial equation 

  

 All real gas equations of state can be expressed approximately in one common form, 

called the Virial equation of state which has the following form for 1 mole of a gas. 

  

   
m

2 3

m m m

pV 1 1 1
Z = = 1 + B + C + D +....

RT V V V  

  

 where B, C, …. are temperature dependent constants known as second, third, etc., virial 

coefficients. These coefficients must be evaluated experimentally at each different 

temperature. 

  
2

m m

a 1 b
Z = 1 + b + + ...

RT V V

  
   

     
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Thus for the second virial coefficient, we have  

a
B = b

RT


 

Third virial coefficient C = b2, and so on. 

 

 

An alternate form of the virial equation of state involves the expression of Z in terms of 

a power series in p, i.e. Z = 1 + A1p + A2p2 + …   
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 BOYLE’S TEMPERATURE 

 

 

a
T =

Rb  =Boyle’s temperature (TB) 

 

 Boyle temperature is that temperature at which a real gas behaves like an ideal gas for a 

range of pressure. 
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QUE 1  Which of the following curve does not represent Boyle’s law?  

 

 

P 

V 

(A) 

   

log P

 log V

(B)

  

 

  P

V

1

(C)

   

  P(D)

V  

 

Solution: P = 
V

C

  
Where C is a constant. We can see that (c) is true as the graph of P vs 

V

1  would be a 

straight line. 

 (B) is true because log P = log C – log V. 

(A) is true because  
2V

C

dV

dP 
  

which means that as V increases the slope decreases and is always negative   (D) 
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QUE 2 Boyle’s law may be expressed as 

  (A) 
V

K

dV

dP

T









 (B) 2

T V

K

dV

dP










 
(C) V

K

dV

dP

T









 (D) none 

 

 

 

Solution: from Boyle’s law;  PV = constant; PdV +VdP = 0; 2
T V

K

V

P

dV

dP









  

                       Thus (PV = K)   (B) 
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QUE 3 A commercial gas cylinder contains 75 L of He at 15 bar (Gauge pressure). Assuming ideal gas 

behavior for the isothermal expansion, how many 3.0 L balloons at 1.1 bar pressure can be filled 

by the gas in the cylinder? 

                      (A) 338   (B) 430 (C) 403 (D) 304 

Solution: Assuming atmospheric pressure to be one bar, initial pressure and final pressure     

                        of He gas present in cylinder will be: 

   pi = 15 + 1 = 16 bar and pf = 1.1 bar 

  Volume of He gas when expanded isothermally to 1.1 bar = L9.1090
1.1

7516


  

  Out of 1090.9L, 75 L of gas will remain in cylinder since this point pressure   

                         equilibrium will be established. 

    Numbers of balloons = 338
3

759.1090


                          Thus (A) 
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QUE 4 A vessel has N2 gas saturated with water vapor at a total pressure of 1 atm. The partial pressure of 

water vapour is 0.3 atm. The contents of this vessel are transferred to another vessel having one 

third of the capacity of original volume, at the same temperature the total pressure of this system 

in the new vessel is  

  (A) 3.0 atm  (B) 1 atm  (C) 3.33 atm  (D) 2.4 atm 

Solution: atm1PP '
OH

'
N 22


  

atm3.0P'
OH2


 
atm7.0P'

N2
  

 Now new pressure of N2 in another vessel of volume V/3 at same temperature T is given by

 
 V7.0

3

V
P 1"

N2
   atm1.2P"

N2
  

  since aqueous tension remains constant, and thus total pressure in new vessel 

  
'

OH
"
N 22

PP   = 2.1 + 0.3 = 2.4 atm   (D) 
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QUE 5 X ml of H2 gas effuses through a hole in a container in 5 seconds. The time taken for the effusion 

of the same volume of the gas specified below under identical conditions is : 

(A) 10 seconds : He   (B) 20 seconds : O2 

(C) 25 seconds : CO    (D)  35 seconds : CO2    

Solution: 2
2

4
2 

He

H

r

r
  (A) is incorrect    ; 4

2

32

2

2 
O

H

r

r

 
(B) is correct 

14
2

28
2 

CO

H

r

r
 (C) is incorrect ;  

2

2

CO

H

r

r
 = 

12

1

44

2
  (D)is incorrect      (B) 
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QUE 6 In what molar ratio He and CH4 should be mixed so that when the mixture is allowed to effuse 

through a pinhole, initially both gases come out at equal rate? 

(A) 2:1                                                 (B) 1:1 

 (C) 2:3                                                  (D) 4:1 

Solution: Since, rate of effusion 
M

n
r )(  from a mixture. 

  0.1
4

16

)(

)(

)(

)(

44


CHn

Hen

CHr

Her  
4CH Hen : n 2 :1                      (A)   
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QUE 7  Dalton’s law of partial pressure is not applicable to, at normal conditions  

  (A) H2 and N2 mixture   (B) H2 and Cl2 mixture 

  (C) H2 and CO2 mixture   (D) H2 and O2 mixture 

Solution: H2 and Cl2 reacts to form HCl; Dalton’s law of partial pressure is valid only for the gases which 

don’t react at ordinary conditions    (B) 
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QUE 8 For two gases A and B with molecular weights MA and MB, it is observed that at a certain 

temperature T1 the mean velocity of A is equal to the root mean square velocity of B. thus the 

mean velocity of A can be made equal to the mean velocity of B if  

 (A) A is at temperature T and B at T, T > T 

 (B) A is lowered to a temperature T2 , T2 < T while B is at T 

 (C) Both A and B are raised to a higher temperature 

 (D) Both A and B are placed at lower temperature 

 

Solution: (UAV)A = 
AM

RT8


 and (Urms)B = 

BM

RT3

 
   

B

A

M

M

3

8



 

  for A (UAV) = 
A

2

M

RT8


 for B (UAV) = 

BM

RT



8

   




3

8

M

M

T

T

B

A2

   

  
   T2 = T

3

8


 or  

                         T2 < T     (B) 
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QUE 9 The K.E. of N molecule of O2 is x Joules at –123°C. Another sample of O2 at 27°C has a KE of 

2x Joules. The latter sample contains. 

  (A) N molecules of O2    (B) 2N molecules of O2 

  (C) N/2 molecules of O2   (D) N/4 molecule of O2 

Solution: Total KE = nRT
2

3
; T = – 123 + 273 = + 150 K ;   150

2

3
nR xJ  

                      => 225  8.314  n = x 

  At 27°C = 27+ 273 = 300K  

  Total KE = 2x Joule = 300314.8
2

3
1  n    nn  1     (A)  
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QUE 10 If for two gases of molecular weights MA and MB at temperature TA and TB,  

TAMB = TBMA, then which property has the same magnitude for both the gases. 

  (A) density   (B) pressure   (C) KE per mol  (D) Vrms 

 

Solution: i)  density of a  gas () = 
RT

PM  

  Since 
A

A

B

B

T

M

T

M
 ,  at the same  pressure A  = B . But if pressure is different         

                       then A  B . 

ii) Pressure of the gases would be equal if their densities are equal otherwise not. 

 

iii) KE per mol = RT
2

3

 

 

  It will be different for the two gases. 

iv) Vrms  = 
M

RT3 ,  since 
B

B

A

A

M

T

M

T
 ;  Vrms of A = Vrms of B   (D) 
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QUE 11  Helium atom is two times heavier than a hydrogen molecule. At 298 K, the average kinetic 

energy of a Helium atom is  

  (A)  two times that of hydrogen molecule  (B) same as that of a hydrogen molecule  

  (C) four times that of a hydrogen molecule (D) half that of  a hydrogen molecule  

Solution: The average kinetic energy of an atom is given as 
2

3  kT.  

    It does not depend on mass of the atom.   (B) 
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QUE 12 The ratio between the rms velocity of H2 at 50 K and that of O2 at 800 K is 

(A) 4  (B) 2       (C) 1          (D) 1/4                    [IIT–JEE ’96] 

Solution: Vrms (H2 at 50 K) = 3102

50R3



;  Vrms (O2 at 800K) = 3

3 800

32 10

R





 

1
1025

1025

1032

800R3

102

50R3

)O(V

)H(V

3

3

3

3

2rms

2rms 



















 (C) 
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QUE 13 The temperature of an ideal gas is increased from 140 K to 560 K. If at 140 K the root mean 

square velocity of the gas molecule is V, at 560 K it becomes 

  (A) 5V   (B) 2V   (C) V/2  (D) V/4 

 

Solution: The Vrms at 140K is V 

   V = 
M

1403R

 
  

At 540 K,  V = 
M

5603R = 
M

R 41403  = 2
M

R 1403   = 2V 

   (B) 
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QUE 14 At 100oC and 1 atm, if the density of liquid water is 1.0 g/cc and that of water vapour is 0.0006 

g/cc, then the volume occupied by water molecule in one litre of steam at that temperature is  

  (A) 6 cc  (B) 60 cc  (C) 0.6 cc  (D) 0.06 cc 

 

Solution: Mass of 1 lt water vapour = V ×d = 1000 × 0.0006 = 0.6g 

  volume of liquid water = 
1

6.0  = 0.6cc    (C) 
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QUE 15 A gas can be liquefied by pressure alone when its temperature is 

  (A) higher than its critical temperature (B) lower than its critical temperature 

  (C) either of these    (D) none 

Solution: A gas can be liquefied only if its temperature is lower than its critical temperature            

   (B) 
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QUE 16 The behavior of a real gas is usually depicted by plotting compressibility factor Z versus P at a 

constant temperature. At high temperature and high pressure, Z is usually more than one. This 

fact can be explained by van der Waals equation when  

 (A) the constant ‘a’ is negligible and not ‘b’   

 (B) the constant ‘b’ is negligible and not ‘a’  

(C) both constants ‘a’ & ‘b’ are negligible 

(D)both the constants ‘a’&‘b’ are not negligible. 

 

Solution: 














2

2

V

an
P (V – nb) = nRT 

At high pressures, ‘b’ cannot be ignored as the volume of the gas is very low. At high 

temperatures ‘a’ can be ignored  

  P (V–b) = RT  ;  PV  -  Pb = RT 

  PV = RT + Pb  ; 
RT

Pb
Z

RT

PV
 1

 
  (A) 
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QUE 17     The compressibility factor for a given gas is 0.927 at 273 K and 100 atm.               

                       Calculate the amount of gas required to fill a gas cylinder of 100 liter capacity     under given 

conditions. (Molecular wt of gas is 30 

                       (A) 16.4 Kg  (B) 14.44 Kg  (C) 4 Kg (D) 10.5 Kg 

 Solution          Since for real gas PV= Z nRT 

                           => 100 × 100 = 0.927 ×w/30×0.0821×273  

                           => W = 14.439 Kg   (B) 
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QUE 18      Using van der waal’s equation, calculate the constant, ‘a’ (atm Ltr2 mole-2)when    two moles of a 

gas confined in a four litre flask exerts a pressure of 11 atm at a   temperature of 300 K. The value of ‘b’ is 

0.05 Litre mole-1 

                       (A) 6.5   (B) 2.23  (C) 23.2 (D) .85 

Solution          Vander waal’s gas equation is 

                           ( P + n2a/V2) (V-nb) = nRT 

 

                        Since V =4 litre, P = 11 atm, T = 300K, b = 0.05 litre mol-1, n = 2 

 

                        Thus (11+22a/42) (4-2 ×0.05) = 2× 0.082× 300 

 

                        =>   a = 6.5 atm litre2 mol-2    (A) 

 

 

 

  


	Furthermore Ump : Uav : Urms : : :  : = :  :  =1 : 1.128 : 1.224
	Also Uav = Urms ( 0.9213

