Properties of Continuous Function

Let f(x) and g(x) be continuous at x = a

The following function are continuous at x = a

$$1) y = kf(x)$$

$$2) y = (f(x))^{P}$$

$$3) y = f(x) \pm g(x)$$

$$4) y = f(x). g(x)$$

5)
$$y = \frac{f(x)}{g(x)}$$
, $g(a) \neq 0$

Properties of Continuous Function

Let f(x) and g(x) be continuous at x = a

The following function are continuous at x = a

$$1) y = kf(x)$$

2)
$$y = (f(x))^{P}$$

3)
$$y = f(x) \pm g(x)$$

$$4) y = f(x). g(x)$$

5)
$$y = \frac{f(x)}{g(x)}$$
, $g(a) \neq 0$

■ Stop Share

Properties of Continuous Function

Let f(x) and g(x) be continuous at x = a

The following function are continuous at x = a

$$1) y = kf(x)$$

2)
$$y = (f(x))^{P}$$

3)
$$y = f(x) \pm g(x)$$

$$4) y = f(x). g(x)$$

5)
$$y = \frac{f(x)}{g(x)}$$
, $g(a) \neq 0$

Differentiability: L.H.D & R.H.D Rate of dags Û 山 Left hand derivative: L. H. D = $\lim_{h\to 0} \frac{f(a) - f(a-h)}{a - (a-h)}$ Vivek Varshney safalta.com f(a+h) - f(a) does not exist $h\rightarrow 0$ $f'(a^{-}) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$ 🔏 Viraj Rao **Right Hand Derivative:** Aryan Dhiman

$$f'(a^{+}) = \text{R. H. D} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \text{ is infin}$$

If L.H.D = R.H.D then y = f(x) is differentiable at x = a

Redmi

If you know function is different then use this formula

Stop Share

山

f(x+h)

f(x)

You are screen sharing

Vivek Varshney

safalta.com

Where, **h** is small positive quantity

I limit

Relation Between Continuity and Differentiability Type I

If f(x) is differentiable at x = a, then f(x) is continuous at x = a

Talking: Vivek Varshney

Relation Between Continuity and Differentiability Type II

If f(x) is **continuous** at x = a then f(x) may or may not be **differentiable**

Talking:

at x = a

Corner

L. H. D and R. H. D are different but f(x) is **continuous**

Corver

Conthuous / Not Nill

L. H. D = 0

R. H. D \neq 2

Not differentable

Cases of Non-Differentiability: Vertical Tangent

Vertical tangent

A tangent line that is vertical, meaning it Talking: Vivek Varshney infinite slope and function whose graph has a vertical tangent is not differentiable at the point of tangency.

Vertical tangent on the function f(x) at x=c

