Functions

RELATION VS FUNCTION

L
Y4
y = f(x)
Y3 C. B
Y2
Y1
s
5 X > X

Note :
(i) If a vertical line cuts a given graph at more than one point then it can not be the graph of a function.

(ii) Every function is a relation but every relation is not necessarily a function.




Functions

DOMAIN, CO-DOMAIN & RANGE OF A FUNCTION :

Let f: A— B.then the set Ais known as the domain of f & the set B i1s known as co-domain of f.
The set of all f images of elements of A is known as the range of f .
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It should be noted that range 1s a subset of co—domain

the domain of the function is the set of those real numbers. where function

For a continuous function. the mterval from minimmm tomaxmum value ofa fimction gives the range.




IMPORTANT TYPES OF FUNCTIONS
PorLyNoamaL Function :

Ifa function fis defined by f(x) =a, x"+a x™'+a,x™*+ .. +a_ x+a_wheren is anon negative integer

anda,a,.a,....a_ arereal numbels and a 20, then f is called a polynonual function of degreen .
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/T here are two polynomial functions, satisfying the relation ; f(x) f(1/x) = f(x) + f(1/x)

n W

They are :
(i) fx)=x+1and (i) f(x) = 1 ", where n is positive integer.
Domain of a polynomial functionisR

\Range for odd degree polynomial is R whereas for even degree polynomial range is a subset of F_L:/J




Exponential/Logarithmic Function
— 3 e

A function f(x)=a*=e*®*(a>0, a=1.x €R)is called an exponential function. The inverse of the

exponential function is called the logarithmic function . 1.e. g(x)=log X .

Note that f(x) & g(x) are inverse of each other & their graphs are as shown .
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g(x) = log x

[ f(x) = e*domain is R and range is R*.




SieNnum FuncTion
A function y=1{(x) = Sgn (x) 1s defined as follows :
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y=f(x)= 0 for x=0 Sap (2
L—lfm X<0 L
: L A
It is also writtenas Sgnx =[x/ x :
x=0: £(0)=0 .
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GREATEST INTEGER OR StEP UP FUNCTION :

The function y=1(x)=[x] 1s called the greatest integer function where [x] denotes the greatest integer
less than or equal to x . Note that for :

=3
-l=x<0 [x]=-1 D0=<x<1 : [x]=0 2l
l<x<?2 : [x]=1 2<x <3 : [x]=2 ["'"?MQ: —4
and so on. [Z2) =2
VA C— 3 =2
graph of y=[x] 5 Properties of greatest integer function :
T2 — (a) [x]=x<[x]+1 and
41 — x—1<[x]=x.0<x-[x]<1
) S (b) [x+m]=[x]+m if m is an integer .
30 2 - - L © [xlI+lyl=[x+yl=[x]+[y]+1
3 ' (d) [x]+[-x] =0 if x 1s an integer
— 4 -2 =—1 otherwise .
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CLASSIFICATION OF FUNCTIONS::
M Function (Injective mapping) : /. Manyg-0 -
Afunction f: A— Bissaid tobe aone—one function or injective mapping if different elements of A

have different f imagesin B . o

Diagramatically an injective mapping can be shown as

(i) Any function which is entirely increasing or decreasing in whole domain. then

f(x) 1s one—one .
(ii) If any line parallel to x—axis cuts the graph of the function atmost at one point.
then the function 1s one—one .




Onto function (Surjective mapping) :
If the function f: A — B 1s such that each element in B (co—domain) 1s the fimage of atleast one element
mA. then we say that f1s a function of A'onto' B .

Diagramatically surjective mapping can be shown as
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Note that : i.ﬁ'ange = co—domain}then f(x)is onto.
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Thus a function can be one of these four types :
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(b)

(c)

(@)

(@)

(ii)

one—oné onfoinjective & surjective) Coizeded

_one—one into (injective but not surjective)

many—one onto (surjective but not mjective)
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DO

many—one into (neither surjective nor mjective)

If f1s both iyjective & surjective. then 1t 1s called a Bijective mapping.
The byective functions are also named as mvertible functions. N

Ifa set Acontains n distinct elements then the number of different functions defined from
A S Aisn*&outofitn! are one one.




COMFE)SITE FUNCTIONS

Let f: & g: -be two functions. Then the function gof: A — C defined by
(gof) (x) g (f(x)) ¥ x €A is called the composite of the two functions f& g

Diagramatically D SN &) g |— g(fix)).
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) The composite of functions is not commutative 1.e. ﬁ;ﬁ fog . w\ﬂ
i) The composite of functions 1s associative 1.e. if £, g. h are three functions such that Eg_gzvoll) &
(fog) oh are defined. then fo(goh)= (fog)oh.
(iii) The composite of two bijections is a bijection 1.e. if f & g are two bijections such that gofis

defined, then gof’is also a bijection. QL J) = SIAIED =S o&




COMPOSITE FUNCTIONS

Let f: A>B & g: B— C be two functions. Then the function gof : A — C defined by
(gof) (x)=g(f(x)) ¥ x € A 1s called the composite of the two functions f& g.

Diagramatically D SN &) g |— g(fix)).
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INVERSE OF A FUNCTION: (5,10 € & Ao, % €4
Let f: A— B bea one=one & onto function. then their exists a unique function
g: B—>A suchthat f(x)=y < g(y)=x. ¥V x €A & y € B. Then gis said to be inverse of .
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Note that the graphs of f & g are the muror images of each other in the linq’y;a

If f: A—> B isabijection & g: B — Ais the inverse of f. then fog=1; and g[ QJC:L)) =<
gof=I, . where I, & I are identity functions on the sets A & B respectively. g_¢ Ua (2 =




INVERSE OF A FUNCTION:

Let f: A— B bea one—one & onto function. then their exists a unique function
g: B—>A suchthat f(x)=y < g(y)=x. ¥V x €A & y € B. Then gis said to be inverse of .

— The inverse of a bijection is also a bijection .

If f& gare two bijections f: A—> B, g: B— C then th_e inversg of gof exists and

(gof)'=f'og?.
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(d) Does not exist




ODD & EVEN FUNCTIONS :
If f (—x) = (x) for all x in the domain of ‘f” then fis said to be an even function. /&Q—:D = - QD(:JD
/-'-"

If f (—x) =—f (x) for all x in the domain of ‘f” then f'is said to be an odd function. (_,_,_—
LA (=30 = § (>0
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y = f(x) x), x>0
(even function y= 9
X -x°,x<0
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—— —f » X y = f(x)
yA \/ 0\/ \ (odd function) .
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x -—
(a) even function (b) odd function

(¢) neither even function nor odd function (d) periodic function




ODD & EVEN FUNCTIONS:
If f (—x)=f(x) for all X in the domain of ‘f” then f1s said to be an even function.

If f (—x) =—f (x) for all x in the domain of ‘f” then f'is said to be an odd function.
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(a) even function ~ (b) odd function <

\(cY" neither even function nor odd function (d) periodic function




ODD & EVEN FUNCTIONS :

If f (—x) = (x) for all x in the domain of ‘" then fis said to be an even function. : ‘——'\"—é\( 1)
If f (—x) =—f (x) for all x in the domain of ‘f” then f'is said to be an odd function. R
— — S — oA
() f(x)-f(=x)=0=>f(x)1seven & f(x)+f(—x)=0=>1f(x)1sodd. ':'7!(
_(b) A function may neither be odd nor even . - vRna-ny-ond
L (© Inverse of an even fuinction is net-defined . \

(d) Every even function 1s symmetric about the y—axis & everyodd function is symmetric about the

onigin. —
(e) Every function can be expressed as the sum of an even & an odd function.
X) . AT = -> — A (—=C
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_(f)  The only function which is defined on the entire number line & is even and odd at the same time
1s f(x)=0. Ao =—o

(2) Iffand g both are even or both are odd then the function f.g will be even but if any one of
‘them 1s odd then f.g will be odd . Qo = o) ol Y\ Ped=af)




ODD & EVEN FUNCTIONS :

If f (—x)=f(x) for all X in the domain of ‘f’ then fis said to be an even function. 4 f“) @1"’“\
If f (—x) =—f (x) for all x in the domain of ‘f” then f'is said to be an odd function. C’Z@ Cﬁ&é
G = W)

@ fx)-f(-x)=0=> f(x)iseven & f(x)+f(-x)=0=>f(x)isodd. BC° ™
(b) A function may neither be odd nor even. h D= Q AN CE
(c) Inverse of an even function i1s not defined. = L QC e al)
(d) Every even function 1s symmetric about the y—axis & everyodd functien is symmetric about the

orgin ()
(e) Every function can be expressed as the sum of an even & an odd function.

N _f(— Car
e.q. f(x) = f(x)+f(—x) . f(x) 2f( X)
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EVEN ODD

§3) The only function which 1s defined on the entire number line & 1s even and odd at the same time

1s f(x)=0.
(2) Iffand g both are even or both are odd then the function f.g will be evenbut if any one of

them 1s odd then f.g will be odd.




PERIODIC FUNCTION :

A function f(x)1s called periodic if there exists a positive number T (T > 0) called the period of the
function such thaf f(x+T)=1(x). for all values of x within the domain of x.

e.g. The function sin X & cos X both are periodic over 2 & tan x 1s periodic over 7.
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(a) Inverse of a periodic function does not exist—
(b) Every constant function is always pen@i@@
(¢) If f(x) has aperiod T T&g (x) also has a period T-then it does not mean that
f(x)+2(x) musthaveaperiodT. e.g. f(x)= ‘ sSInxX | + | COsX |
S
(d) 1if f(x) has aperiodT then@(gx +b)hasa m (a>0). / C{_*_;})__ LS “"QL'H‘-Q\ \Lm(ﬁﬂg)
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Problem

If f(x)=cosx+ {r} where {} is fractional part function then the period of f(x) is

a)2r \,zr }, b) 1 c)g :\/_?/Doesnot exist
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