

PROPLEM 6 Two litre of N_2 at $0^{\circ}C$ and 5 atm pressure are expanded isomermally against a constant external pressure of 1 atm until the pressure of gas reaches 1 atm. Assuming gas to be ideal, calculate work of expansion.

Solution Since the external pressure is greatly different from the pressure of N₂ and thus, process is irreversible.

$$W = -P_{\text{ext}} (V_2 - V_1)$$

$$W = -1 \times (V_2 - V_1)$$

$$W = -1 \times (V_2 - V_1)$$

$$V_1 = 2 \text{ litre} \qquad V_2 = ? \qquad T = 273 \text{ K}$$

$$P_1 = 5 \text{ atm} \qquad P_2 = 1 \text{ atm}$$

$$P_1 V_1 = P_2 V_2$$

$$V_2 = \frac{2 \times 5}{1} = 10 \text{ litre}$$

PROBLEM 8 Calculate the work done in open vessel at 300 K, when 92 g Na reacts with water. Assume ideal gas nature.

Solution

$$2Na + 2H_2O \longrightarrow 2NaOH + H_2$$
Mole of Na = $\frac{92}{23}$ = 4

Mole of H₂ formed =
$$\frac{1}{2}$$
 × Mole of Na used
= $\frac{1}{2}$ × 4 = 2

Work is done in giving out 2 mole H₂. Thus,

$$W = -P \times V_{H_2} = n_{H_2} RT$$

= -2 \times 8.314 \times 300
= -4988.4 J

The H₂ liberated pushes the atmospheric gas back and thus, does work in driving back the atmosphere. Note that in case of closed vessel $\Delta V = 0$, $\therefore W = 0$.

PROBLEM 15 Calculate the maximum work done in expanding 16 g of oxygen at 300 K and occupying a volume of 5 dm³ isothermally until the volume becomes 25 dm³.

Solution Since maximum work and thus, process is reversible

$$n_{O_2} = \frac{w}{m} = \frac{16}{32}, \quad R = 8.314 \text{ J}, \quad T = 300 \text{ K}, \quad V_1 = 5 \text{ dm}^3, \quad V_2 = 25 \text{ dm}^3$$

$$W = -2.303 \, nRT \, \log_{10} \frac{V_2}{V_1}$$

$$= -2.303 \times \frac{16}{32} \times 8.314 \times 300 \, \log_{10} \frac{25}{5}$$

$$= -2.01 \times 10^3 \text{ joule}$$

PROBLEM 44 Determine the entropy change for the reaction given below;

 $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$

at 300 K. If standard entropies of $H_2(g)$, $O_2(g)$ and $H_2O(l)$ are 126.6, 201.20 and 68.0 J K⁻¹ mol⁻¹ respectively.

Solution

$$\Delta S_{\text{Reaction}} = \Sigma S_{\text{Product}} - \Sigma S_{\text{Reactants}}$$

= $2 \times S_{\text{H}_2\text{O}} - [2 \times S_{\text{H}_2} + S_{\text{O}_2}]$
= $2 \times 68 - [2 \times 126.6 + 201.20]$
 $\Delta S = -318.4 \text{ JK}^{-1}$

PROBLEM 51 For a reaction $M_2O(s) \rightarrow 2M(s) + \frac{1}{2}O_2(g)$; $\Delta H = 30$ kJ mol⁻¹ and $\Delta S = 0.07$ kJ K⁻¹ mol⁻¹ at 1 atm. Calculate upto which temperature, the reaction would not be spontaneous? (AISSE 1991)

Solution Given, for the change

$$\Delta H = 30 \times 10^3 \text{ J mol}^{-1}$$

$$\Delta S = 70 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$$

For a non-spontaneous reaction

$$\Delta G = + ve$$

Since

$$\Delta G = \Delta H - T \Delta S$$

٠.

$$\Delta H - T\Delta S$$
 should be +ve

or

$$\Delta H > T \Delta S$$

or

$$T < \frac{\Delta H}{\Delta S}$$

$$<\frac{30\times10^3}{70}$$

$$T < 428.57 \,\mathrm{K}$$

PROPLEM 10 Calculate the enthalpy of vaporisation for water from the following:

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g); \quad \Delta H = -57.0 \text{ kcal}$$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g);$$
 $\Delta H = -57.0 \text{ kcal}$
 $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l);$ $\Delta H = -68.3 \text{ kcal}$

Also calculate the heat required to change $lg H_2O(l)$ to $H_2O(g)$.

PROEXEM 14 The molar heats of combustion of $C_2H_2(g)$, $C_{(Graphite)}$ and $H_2(g)$ are 310.62, 94.05 and 68.32 kcal respectively. Calculate heat "of formation of C_2H_2 .

Solution We have to calculate

$$2C_{Graphite} + H_2(g) \longrightarrow C_2H_2(g); \qquad \Delta H = ?$$

Given,

$$C_2H_2(g) + \frac{5}{2}C_2(g) \longrightarrow 2CO_2(g) + H_2O(g);$$

$$\Delta H = -310.62 \text{ kcal} \dots (1)$$

$$C_{Graphite} + O_2(g) \longrightarrow CO_2(g); \Delta H = -94.05 \text{ kcal} \dots(2)$$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g); \Delta H = -68.32 \text{ kcal} \dots(3)$$

Multiply Eq. (2) by 2 and add in Eq. (3)

$$2C_{Graphite} + \frac{5}{2}O_2(g) + H_2(g) \longrightarrow 2CO_2(g) + H_2O(g);$$

$$\Delta H = -256.42 \text{ kcal } \dots (4)$$

Subtract Eq. (1) from Eq. (4)

$$2C_{Graphite} + H_2(g) \longrightarrow C_2H_2(g);$$
 $\Delta H = + 54.2 \text{ kcal}$

PFOBLEM 23 From the following data, calculate the enthalpy change for the combustion of cyclopropane at 298 K. The enthalpy of formation of $CO_2(g)$, $H_2O(l)$ and propene(g) are -393.5, -285.8 and 20.42 kJ mol $^{-1}$ respectively. The enthalpy of isomerisation of cyclopropane to propene is -33.0 kJ mol $^{-1}$. (IIT 1998)

PRIEM 24 Determine enthalpy change for,

$$C_3H_8(g) + H_2(g) \longrightarrow C_2H_6(g) + CH_4(g)$$

at 25°C using heat of combustion values under standard conditions.

Compounds $H_2(g)$ $CH_4(g)$ $C_2H_6(g)$ $C_{(Graphite)}$ ΔH° in kJ / mol -285.8 -890.0 -1560.0 -393.5

The standard heat of formation of $C_3H_8(g)$ is -103.8 kJ mol⁻¹

(IIT 1992)

PROBLEM 50 Calculate the C—C bond energy from the following data: (a) $C(s) \longrightarrow C(g)$; $\Delta H = 170.9 \text{ kcal}$ (b) $\frac{1}{2}H_2 \longrightarrow H(g)$; $\Delta H = 52.1 \text{ kcal}$

$$\mathcal{L}(a)$$
 $C(s) \longrightarrow C(g);$ $\Delta H = 170.9$

(b)
$$\frac{1}{2}H_2 \longrightarrow H(g);$$
 $\Delta H = 52.1 \, kcal$

- (e) Heat of formation of ethane = -20.3 kcal
- (d) C—H bond energy = 99.0 kcal

Solution
$$2C + 3H_2 \longrightarrow C_2H_6$$
; $\Delta H = -20.3 \text{ kcal}$
Also, $\Delta H = -[1e_{C-C} + 6e_{C-H}] + [2(C(s) \rightarrow C(g)) + 3e_{H-H}]$
 $\therefore -20.3 = -[e_{C-C} + 6 \times 99] + [2 \times 170.9 + 3 \times (2 \times 52.1)]$
or $e_{C-C} = -594 + 341.8 + 312.6 + 20.3$
C—C bond energy = 80.7 kcal

PROBLEM 53 The dissociation energy of CH₄ is 360 kcal/mol and of ethane is 620 kcal/mol. Calculate C—C bond energy.

Solution Given,
$$CH_4 \longrightarrow C+4H$$
; $\Delta H = 360 \text{ kcal}$
 \therefore Bond energy of $4(C-H)$ bond $= 360 \text{ kcal}$
 \therefore " " $C-H$ bond $= \frac{360}{4} = 90 \text{ kcal}$
In $C_2H_6 \longrightarrow 2C+6H$
Bond energy of $C_2H_6 = 1(C-C) + 6(C-H)$
 $620 = 1(C-C) + 6 \times 90$

PROBLEM 56 Heat of atomisation of NH_3 and N_2H_4 are x kcal mol^{-1} and y kcal mol^{-1} respectively. Calculate average bond energy of N—N bond.

Solution

$$NH_3 \longrightarrow N(g) + 3H(g); \quad \Delta H_1 = x \text{ kcal mol}^{-1}$$

$$N_2H_4 \longrightarrow 2N(g) + 4H(g); \quad \Delta H_2 = y \text{ kcal mol}^{-1}$$

$$N_2H_4 \longrightarrow 2N(g) + 4H(g); \quad \Delta H_2 = y \text{ kcal mol}$$

$$\Delta H_1 = 3 \times e_{N-H} = x \qquad ...(1)$$

$$\Delta H_2 = 4 \times e_{N-H} + e_{N-H} = y \qquad (2)$$

$$\Delta H_2 = 4 \times e_{N-H} + e_{N-N} = y$$
 ...(2)

From Eqs. (1) and (2)

$$y = 4 \cdot \frac{x}{3} + e_{N-N}$$

$$e_{N-N} = y - \frac{4x}{3}$$

$$= \frac{3y - 4x}{3} \text{ kcal mol}^{-1}$$

PROPLEM 59 Calculate the resonance energy of N_2O from the following data: ΔH_f° of N_2O is 82 kJ mol⁻¹.

 $N \equiv N$ 946 kJ mol⁻¹

N=N 418 kJ mol⁻¹

O = O 498 kJ mol⁻¹

 $N=O \qquad 607 \, kJ \, mol^{-1}$

(Roorkee 1991)

Solution Given, for N₂O

$$N_2 + \frac{1}{2}O_2 \longrightarrow N_2O$$
; $\Delta H_{exp} = 82 \text{ kJ}$

Also from bond energy data, using N=N=O structure for N2O

$$\Delta H_{fcal.} = -[1(N=N) + 1(N=O)] + (N=N) + \frac{1}{2}(O=O)]$$

= $-[418 + 607] + [946 + \frac{1}{2}(498)]$
= $+170 \text{ kJ}$

Now, resonance energy = Exp. $\Delta H_{f \text{ N}_2\text{O}}$ - Calculated $\Delta H_{f \text{ N}_2\text{O}}$ = 82 - 170 = -88 kJ mol⁻¹

PROBLEM 62 Calculate the resonance energy of C_6H_6 using Kekule formula for C_6H_6 from the following data.

- (1) ΔH_f° for $C_6 H_6 = -358.5 \text{ kJ mol}^{-1}$
- (2) Heat of atomisation of $C = 716.8 \text{ kJ mol}^{-1}$
- (3) Bond energy of C—H, C—C, C=C and H—H are 490, 340, 620 and 436.9 kJ mol⁻¹ respectively.

Solution

For
$$C_6H_6$$
: $6C(s) + 3H_2(g) \longrightarrow C_6H_6$; $\Delta H_{exp} = -358.5 \text{ kJ}$
 $\Delta H_{cal} = [\text{B.E. data for formation of bonds}]$
 $+ \text{B.E. data for dissociation of bonds}]$
 $= -[3(C-C) + 3(C-C) + 6(C-H)] + [6C_{s \to g} + 3(H-H)]$
 $= -[3 \times 340 + 3 \times 620 + 6 \times 490] + [6 \times 716.8 + 3 \times 436.9]$
 $= \Delta H_f = -208.5 \text{ kJ mol}^{-1}$
Resonance energy = Exp. ΔH_f - Calculated ΔH_f
 $= -358.5 - (-208.5)$
 $= -150.0 \text{ kJ mol}^{-1}$

Calculate the heat of formation of anhydrous Al_2Cl_6 from: $2Al(s) + 6HCl(aq) \longrightarrow Al_2Cl_6(aq) + 3H_2(g)$; $\Delta H = -239.76$ kcal $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$; $\Delta H = -44.0$ kcal $HCl(g) + aq \longrightarrow HCl(aq)$; $\Delta H = -17.32$ kcal $Al_2Cl_6(s) + aq \longrightarrow Al_2Cl_6(aq)$; $\Delta H = -153.69$ kcal

[Ans. -321.99 kcal]

Calculate the heat of formation of sulphuric acid from
$$S(s) + O_2(g) \longrightarrow SO_2(g)$$
; $\Delta H = -70.96 \text{ kcal}$ $SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g)$; $\Delta H = -23.49 \text{ kcal}$ $SO_3(g) + H_2O(l) \longrightarrow H_2SO_4(l)$; $\Delta H = -31.14 \text{ kcal}$ $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$; $\Delta H = -68.40 \text{ kcal}$

[Ans. -193.99 kcal]

The enthalpy is maximum for

(B) 10 gms of ice (A) 10 gms of water

(C) 10 gms of steam (D) Same for all

Q.15 When 50cm³ of 0.2 N H₂SO₄ is mixed with 50 cm³ of 1 N KOH, the heat liberated is

(A) 11.45 KJ

(B) 57.3 KJ

(C) 573 J

(D) 573 KJ

The heats of neutralisation of HCl with NH_4OH and that of NaOH with CH_3COOH are repectively -51.4 and -50.6 KJ eq⁻¹. The heat of neutralisation of acetic acid with NH_4OH will be Q.16

(A) -44.6 KJ eq⁻¹ (B) -50.6 KJ eq⁻¹ (C) -51.4 KJ eq⁻¹ (D) -57.4 KJ eq⁻¹

- Q.17 In which of the following combinations of HCl and NaOH, the heat energy liberated is maximum
 - (A) 10ml of 0.1M HCl+40 ml of 0.1 M NaOH (B) 30ml of 0.1M HCl+20 ml of 0.1 M NaOH
 - (C) 25ml of 0.1M HCl+25 ml of 0.1 M NaOH (D) 35ml of 0.1M HCl+15 ml of 0.1 M NaOH

Under the same conditions how many mL of 1MKOH and $0.5 \mathrm{MH_2SO_4}$ solutions, respectively when mixed for a total volume of $100 \mathrm{\,mL}$ produce the highest rise in temperature: Q.3

(A) 67:33

(B) 33:67 (C) 40:60 (D) 50:50

- Q.15 $C(s) \xrightarrow{1} O_2 \longrightarrow CO(g)$, $\Delta H^{\circ} = -26 \text{ kcal mol}^{-1}$ $CO(g) + \xrightarrow{1} O_2(g) \longrightarrow CO_2(g)$, $\Delta H^{\circ} = -68 \text{ kcal mol}^{-1}$ Which is/are correct statement(s)?
 - (A) heat of formation of CO₂ is -68 kcal mol⁻¹
 - (B) heat of combustion of C(s) is -26 kcal mol-1
 - (C) heat of combustion of CO(g) -68 kcal mol-1
 - (D) heat of formation of CO(g) is -26 kcal mol-1

Q.9 The favourable conditions for a spontaeous reaction are

(A)
$$T \Delta S > \Delta H$$
, $\Delta H = +ve$, $\Delta S = +ve$

(B)
$$T\Delta S > \Delta H$$
, $\Delta H = +ve$, $\Delta S = -ve$

(C)
$$T\Delta S = \Delta H$$
, $\Delta H = +ve$, $\Delta S = -ve$

(D)
$$T \Delta S = \Delta H$$
, $\Delta H = +ve$, $\Delta S = +ve$

Q.19 For the reaction at 300 K

A(g) + B(g)

 \longrightarrow

C(g)

 $\Delta E = -3.0 \text{ kcal}$

:

 $\Delta S = -10.0 \text{ cal/K}$

value of ΔG is

(A)-600 cal

(B)-6600 cal

(C)-6000 cal

(D) None

Q.20	What is the free energy change (ΔG) when 1.0 mole of water at 100°C and 1 atm pressure is
	converted into steam at 100°C and 1 atm pressure?

(A) 80cal

(B) 540 cal (C) 620 cal

(D) zero

- Ex. 49. Two moles of a perfect gas undergo the following processes:
 - (a) a reversible isobaric expansion from (1.0 atm, 20.0 L) to (1.0 atm, 40.0 L)
 - (b) a reversible isochoric change of state from (1.0 atm, 40.0 L) to (0.5 atm, 40.0 L)
 - (c) a reversible isothermal compression from (0.5 atm, 40.0 L) to (1.0 atm, 20.0 L)
 - (i) Sketch the labels of each of the processes on the same p-V diagram.
 - (ii) Calculate the total work (W) and the total heat change (q) involved in the above processes.
 - (iii) What will be the values of ΔE , ΔH and ΔS for the overall process?

(IIT 2002)

52. The heat of formation of methane is – 17.9 kcal. If the heats of atomisation of carbon and hydrogen are 170.9 and 52.1 kcal per mole, calculate the C—H bond energy in methane.